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ABSTRACT 

For a pointed cosimplicial space X', the author and Kan developed a spectral 
sequence abutting to the homotopy of the total space Tot X*. In this paper, X" 
is allowed to be unpointed and the spectral sequence is extended to include 
terms of negative total dimension. Improved convergence results are 
obtained, and a very general homotopy obstruction theory is developed with 
higher order obstructions belonging to spectral sequence terms. This applies, 
for example, to the classical homotopy spectral sequence and obstruction 
theory for an unpointed mapping space, as well as to the corresponding 
unstable Adams spectral sequence and associated obstruction theory, which 
are presented here. 

§1. Introduction 

Recall from [8] that Tot X" is the mapping space Map(A °, X') where A ° is 
the cosimplicial space of  standard simplices A m for m > 0. Assuming that X" 
is made fibrant, Tot X ~ is also the inverse limit of  the tower {Tots X'} 
of fibrations with Tots X" = Map(SksA', X') for s > 0 where Sks is the s- 
skeleton functor. The spectral sequence {E:,t(X', b)} of [8], abutting to 
{nt_s(Tot X', b)} for a vertex b ~ T o t  X', was constructed as the homotopy 
spectral sequence of  the tower {(Tots X', b)} and has E~,t(X ", b) = 7:Ttt(X', b) 

for t > s. It was "fringed" in dimension zero, since there were no negative 
dimensional terms to receive differentials. This construction has long 

seemed unnecessarily restricted and can obviously be extended at the E2- 
level. Acting in the spirit of [9], we obtain our present version of  the spectral 
sequence by constructing an array of  differential relations on the nor- 
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malized homotopy of X', using universal cosimplicial models when needed. 
For any vertex b E Totm X" liftable to Tot2m X" with m ~ 1, we obtain 
a truncated spectral sequence {E*,,t(X',b)}~=,~=m+~ where EU(X' ,b)  is 
defined for 

t ~ s ~ O  or t-r~(r-2~(s-r)- - w i t h s ~ r ,  
\ r  - 1/ 

and where EU(X', b) depends only on the projection of b to Tot,_~ X'. 
As usual, E,+~(X', b) is determined by the action of d, on E,(X', b), 
although certain differentials are relational. For a vertex b ~Tot  X" this 
produces the desired spectral sequence {EU(X', b)}. For a vertex b ETot,  X" 
with n ~ 0, we define natural obstruction elements ~,,(b)~ET+~."(X ", b) for 
1 ~ r ~ (n + 2)/2, and show that ?,(b) -- 0 iffthe projection ofb to Tot._,+~ X" 
lifts to Tot. +1 X). Here we use our truncated spectral sequences. We define 
similar obstructions to lifting paths. Our homotopy spectral sequence and 
obstruction results have improved versions when certain Whitehead products 
vanish in X'. 

We obtain results on the convergence of {EU(X', b)} to lit _~(Tot X', b) for 
t - s > 0, and we derive a comparison theorem showing that a cosimplicial 
map f :  X ' ~  11" induces an equivalence Tot X',-- Tot r when it induces a 
suitable E-equivalence for some r. We also obtain a natural Hurewicz map 
from {E,*.t(X ., b)} to the R-homology spectral sequence {E,*,t(X'; R)} of[6] for 
a ring R. In fact, our sign conventions are chosen to permit this. Turning to 
examples, we first discuss an extended version of the classical homotopy 
spectral sequence and obstruction theory for a mapping space Map(K, L) with 
E2-term {H*(K; 7ttL)} and with a Hurewicz map to an Anderson homology 
spectral sequence. We then discuss the corresponding unstable Adams spectral 
sequence and obstruction theory with E2-term {Der'e~(H,K, H,L)}  and with 
a Hurewicz map to a homology spectral sequence involving derived Lannes 
functors. Many other examples can be developed; for instance, our machinery 
applies to the homotopy inverse limit spectral sequences of [8] and to the 
unstable Adams spectral sequences of Dwyer-Miller-Neisendorfer [12] and 
Dror-Zahrodsky [ 11 ]. 

The paper is organized as follows: Section 2 presents our general homotopy 
spectral sequence; Section 3 explains its agreement with the tower homotopy 
spectral sequence; Section 4 contains convergence results; Section 5 develops 
our cosimplicial obstruction theory; Section 6 gives connectivity and com= 
paxison results for total spaces; Section 7 extends the classical homotopy 
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spectral sequence and obstruction theory of a mapping space; Section 8 deals 
with derivations over the Steenrod algebra; Section 9 develops the unstable 
Adams spectral sequence and obstruction theory of a mapping space; Sections 
10-13 contain detailed constructions underlying our results; and Section 14 
is an appendix on the homotopy theory of groupoids and cosimplicial 
groupoids, with a general application to the lifting problem for vertices in a 
tower of total spaces. 

This paper extends joint work with D. M. Kan and constitutes an expanded 
response to some questions posed by E. Dror-Farjoun, H. Miller, and 
J. Neisendorfer. We work simplicially and generally follow the terminology of 
[8], so that "space" means "simplicial set". 

§2. The homotopy spectral sequence of a cosimpficial space 

After needed preliminaries, we present our general homotopy spectral 
sequence, postponing the main constructions and proofs to Sections 10-13. 
Our domains of definition for spectral sequence terms are not best possible but 
seem most convenient. Throughout this section, X" will be a fibrant cosimpli- 
cial space. 

2.1. The homotopy of X'. For t > 0, X" has unpainted normalized homo- 
topy NTtf~X '~ consisting of all x ~Tttfr~x m= [S t, X " ] ~  such that s~x~ 
~t~f~x r ' - '  is trivial for 0 _-<j _-< m, and for a vertex vEX m, X" has normalized 
homotopy 

m - l  

N#,(X v) = N 
j - O  

ker(s~: ~,(X ~ , v )~  #,(X m-', s/v)). 

For a vertex b ETotq X', let b also denote the projected vertex bk ETOtk X" 
for k<-_q and the vertex (d')mboEX '~ for m >_-0. Thus NTtt(X",b) 
denotes N~rt(X TM, (dl)mbo). The homomorphism (d~)~: ~I(X °, b)==~ 7tl(X TM, b) 
induces a right action by 7r,(X °, b) on NTrt(X ~, b) c ~t(X ~, b) for t > 1. Recall 
that a vertex b ~ Totq X" is a cosimplicial map b" Sk~A ° ~ X'. For t > 1 there is 
a cosimplicial group 7tt(X', b)--{Ttt(X m, b)}m~0 for each vertex b ETot~ X* 
such that, for each m _->0, 7r,(Sk, Am,0) acts trivially on u,(X~,b) 
viab.:~(Sk,Am, O)~u,(X",b)  where 0EA" is the initial vertex. This 
is automatic when b ETotm X" lifts to Tote X*, or when the spaces X TM have 
simple components. 
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2.2. The eohomotopy of a eosimplicial group. A cosimplicial group G ° has 
normalized groups 

m--l 
NG m =  N ker(s j ' G  m ~ G  m-l) 

j - 0  

for m > 1. When G ° is abelian there are coboundary homomorphisms 

m+l 

j - 0  
( -- 1)JdJ: NG m ---,NG m+l 

giving cohomotopy groups H m ( N G  ") = 7[mG ". In general, the group NG ° right- 
acts on each group NG m by 

a ' x = [ ( d ' ) m x ] - l a [ ( d ~ ) m x ]  f o r x C N G  ° and a C N G  m. 

There is a coboundary function J :  NG °--, NG'  with Jx = (d lx ) -  '(d°x) which 

is a crossed-homomorphism and determines (see below) an associated fight- 

action • of  the group NG ° on the set NG'  with y • x = (d~x) - ~y(d°x). There is 
also a coboundary function J :  NG ~-* NG 2 with @ = (d2y) (d°y) (d 'y ) -  ~ which 

satisfies ~ y  , x ) = ( @ ) . x  for each y C N G  ~ and x C N G  °. The cohomotopy 

group rc°G ° is the kernel of  J : N G ° ~ N G  ', and the pointed cohomotopy set 

x'G ° is the quotient of  the kernel of  J : N G  ~ - - ,NG ~ by the ,-action of NG °. 

There is no reasonable coboundary function J :  NG  m ---, NG  m + l for m > 2, but 

we shall use the alternating product 

~(x) = (d°x) (d 'x )  - ' (d~x)  . . . (dm + 'x)  +- ' 

when necessary, although &~ need not be trivial. Generalizing ~°G°, we let 

n°J " = ( x  CJ ° ] d°x  = d l x }  

for a cosimplicial set J ' .  For a group B right-acting on an additive (but possibly 

non-abelian) group M, a crossed-homomorphism f :  B --- M is a function with 
f ( ab )  = ( f a ) b  + f b  for each a, b C B. The crossed-homomorphic action of  B on 
the set M is defined by m • b = mb + f b  for m C M and b C B. 

2.3. Relations. A relation f :  A ~ B from a set A to a set B is a subset 

f c  A X B,  with the notation f (a )  = b indicating (a, b ) C f .  We define 

d o m a i n f =  {a CA If(a) -- b for some b CB}, 

i m a g e f =  {b CB If(a) = b for some a CA }. 
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When A and B are pointed,  by 0 E A  and 0 ~ B ,  we define 

kernel f =  {a CA If(a) -- 0}, 

i n d e t e r m i n a c y f =  {b E B  If(0)  = b}, 

and we call fpointed when f (0)  = 0. We can now introduce 

2.4. The spectral sequence {E:,'(X', b)}. For  r > 1, let b E T o t , _ l  X" be a 

vertex liftable to TOt2r-2 X'. When r = 1 and s > O, E~'t(X ~, b) = N I I t ( X  s, b) as 

a pointed set for t = 0, as a group with fight E° : (X ", b)-action for t = 1, and as 

an abelian group with right E° : (X TM, b) action for t > 2 .  When  r - - 2 ,  

E~,t(X ", b) = r:rtt(X', b) as a pointed set for (s, t) = (0, 0) or  (s, t) = ( l ,  1), as a 

group for (s, t) = (0, 1), and as an abelian group with fight E°, '(X TM, b)-action 

for t > 2 with s > 0. When r > 2, E:'t(X ", b) is defined for 

t > s > 0 =  = or t-r>=(r_---~)r-2 ( s - r )  w i t h s > r : =  

it is a poin ted  set for 0 _-< s = t N r - 1, a group for (s, t) -- (0, 1), and an 

abelian group with right E °:  (X', b)-action otherwise. The terms E:.'(X', b) are 

natural in b E Tot ,_  l X" and X',  i.e. for path classes in Tot ,_ ,  X" and cosimpli- 

cial maps. Next,  assume that s.t E:+~(X',b) is defined; thus, for r >_-1, let 

b E Totr X" be a vertex liftable to Toh~ X" and suppose that 

t > s > O  or t - r - l > ( ~ - ~ r l ) ( s - r  - 1 )  w i t h s > r + l .  

Then there is a differential dr going out  o f  E:'t(X ", b) and consisting of: a 
pointed relation dr: E°'°(X ", free b) - -  Nit,_ t X r with domain  E°'° (X TM, b); a pointed 

relation 
dr: Et,t(X ", b)~Et+',t+'-~(X ", b)/E°t,l(X ", b) 

for 1 _-< t _-< r - 1 with domain  Etr't(X ", b) where "/" forms the orbit  set; a 

c rossed-homomorphism d,.:E°,~(X',b)-,,E:,"(X',b); a pointed function 

dr: E~:(X', b)"-" E2"'Er-I(X ~, b) such that 

dr(Y,X)=(d,.y)x forxEE°'~(X',b) and y~E:,'(X',b) 

using the crossed homomorph i sm action y , x = y x + d , x ;  and an 
E ° J ( X  ", b)-equivar iant  homomorph i sm d,.: E:,t(X ", b)--,.E:+'.t+"-~(X TM, b) 
otherwise. The differential dr is natural  in b E Totr X" and X'. It satisfies 

drdr -- 0 whenever  the composi t ion is defined, and E:~ ~(X', b) is given by: the 
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set of  all xEE°,°(X' ,b)  with drx = y  for some trivial y~Nnf~_~X" when 
(s, t) = (0, 0); the kernel of  dr on E:'t(X ", b) when s < r and (s, t) ÷ (0, 0); the 

orbit set of  the kernel of  dr on EU(X',  b) under the crossed-homomorphism 
action by E° : (X TM, b) when (s, t )=(r,r);  and the ordinary homology with 
respect to dr at Es,t(X *, b) otherwise. When r = 1, the differential 

d~ : Ef,t(X ", b)---, Ef+',t(X ", b) 

equals ( - 1 ) t - ' - l $ : N n , ( X ' , b ) ~ N T t t ( X s + ~ b )  in the cosimplicial group 

7rt(X*, b) for t > 1, and the differential 

d, " E°'°(X ", b) ~ Nztof~X ' 

equals (d°,d~),:xoX°--,Nrt~'*X~. We thereby recover the fact that 
E~,'(X', b) = 7t%(X', b ). 

For a vertex b E T o t  X', we now have a spectral sequence {E,(X', b)}~.<,<oo 
which, we shall see, generalizes and extends the spectral sequence of [8] and 
[9]. Likewise, for a vertex b ~ TOtm X" liftable to TOt2m X ° with 0 _-< m < oo, we 
have a truncated spectral sequence {E,(X', b)}l<_r<_m+l. In general, E,(X', b) 
and d,_~ depend only on the projected vertex b ~To t , _ t  X'; however, when 
Whitehead products vanish in X', they will depend only on b ~ Tot,_ 2 X" and 
will be more widely defined as follows. 

2.5. On {EU(X', b} when Whitehead products vanish. Suppose that all 
Whitehead products vanish in the spaces X" for s > 0. This is automatic when 
X" is "grouplike" as in [8, p. 275]. For r _-> 2, let b CTot,_2 X" be a vertex 
liftable to Tot2,_3 X'. When r -- 2, 

Ef'I(X ", b) = Nx,(X*, b) and E[,t(X ", b) = ~s~t(X TM, b) 

as pointed sets for (s, t) = (0, 0) and as abelian groups for t = 1 with s >_ 0. 
When r _-> 2, EU(X',  b) is defined for 

t>-_s>-_O or t - r+l>(r - -~ l ) r -2  ( s - r + l )  withs>_-r: 

it is a pointed set for 0 _-< s -- t _-< r - 2 and an abelian group otherwise. The 
terms EU(X',  b) are natural in b ETot ,_2 X" and X', i.e for path classes in 
Tot,_2 X" and cosimplicial maps. Next assume that *.* E,~+I(X ", b) is defined; 
thus, for r _>- 1, let b E Tot,_ ~ X" be a vertex liftable to Tot2,_ l X', and suppose 
that 
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t>=s>----_O or t - r>_- - ( [ -~r l ) ( s - - r )  w i t h s > _ - r + l .  

Then there is a differential dr going out of  ~ t E,, (X*, b) and consisting of: 
a pointed relation dr:E°.°(X*,b)~N~,f~_~X r with domain E°,°(X',b); a 

pointed relation 

dr: t t  E:' (X', b)"-'~t+r't+r-l( " x ~ , ~ t +  t b) for 1 _-< t ffi < r - 2 

with domain E:,t(X ", b); a pointed function 

dr: E , r - l : - l (X *, b)-~E~r-l '2"-2(X *, b) when r > 2; 

and a homomorphism dr: s : E:' (X', b ) ~ E: +r't +r- t (X ", b) otherwise. The dif- 

ferential d, is natural in b E TOtr_ 1 X~ and X'. It satisfies d, d, = 0 whenever the 
composit ion is defined, and E:¢~(X', b) is given by the homology with respect 
to dr at E~.t(X *, b) as in 2.4. 

Consequently, when X" has vanishing Whitehead products, we have a 

spectral sequence {Er(X', b)}~r<® for b E T o t X "  and a truncated spectral 
sequence {E,(X', b)}~<, <,~ +2 for b ~ Totm X" liftable to Tot2m +l X~ with 0 _-< 
m < or. These extend the spectral sequences of  2.4. 

2.6. Technical refinements. The notation [~tX', ~ .X ' ]  ffi 0 will indicate 
[nt(X s, v), nj(X s, v)] = 0 in ~t+i_ l(X s, v) for e a c h j  > 1, s > .0, and v E X  ~. For 
m _-> 0, let b ~ TOtm X ~ be a vertex satisfying either of  the conditions: (i) b is 
liftable to TOt2m+l X TM and [xtX', n .X ' ]  -- 0 for 1 _-< t < 2m + 1; or (ii) b is 
liftable to TOt2m +2 X m and [ntX', n .X ' ]  -- 0 for 1 < t _-< m + 1. Then there is a 

truncated spectral sequence {Er(X', b)}l~r~m+2 exactly as in 2.5. Next, for 
m > 2, let b ETotm X ~ be a vertex liftable to Tot2,, X ~. I f  [TrtX', lr .X']  --- 0 for 
some t with 1 < t < m - 1, then there is a natural pointed relation 

d,,,:E~:(X', v,1"~'--~"+""+"-ur',.,,+~ ~,..,, , b) 

with domain Ekt(X *, b) and kernel E~t+I(X m, b); this d,. is a function when 
t ~-m-- I. 

2.7. Hurewicz maps of spectral sequences. For a pointed space (Y, Yo) and 

ring R with identity, let h : nt(Y, Y0) "* Hi(Y; R)  be the Hurewicz map given by 
the composite of  the forgetful map nt(Y, Y o ) ' ~ Y  with the unpointed 
Hurewicz map  h : n ~ Y  ~ Hi(Y, R). Thus h is a homomorph i sm for t >_- I and 
h [ y ] - - [ y - y 0 ]  for t f f i0.  This will induce a Hurewicz map h from the 
(possibly truncated) homotopy spectral sequence {E,~.t(r, b)} of  2.4--2.6 to 
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the homology spectral sequence {E:,'(X', R)} of [6] and 10.8. The spectral 
sequence map h will begin with the obvious maps 

for r - -  1 and 

h" Nn,(X s, b) -" NHt(XS; R) 

h: nSn,(X s, b )~  nSHt(XS; R) 

f o r r  = 2, and it will respect all differentials, including the relational ones. For 
a vertex b E T o t  X', the Hurewicz map h:{E:.t(X TM, b)}~  {E:,t(X';R)} will 
abut to the Hurewicz map h : nt_s(Tot X', b ) ~  Ht-s(Tot  X'; R). 

§3. Agreement with the tower spectral sequence 

For a fibrant cosimplicial space X', we now interpret the terms E:.'(X', b) for 
t > s as derived homotopy groups of fibers in {Tots X'} when b is sufficiently 
liftable. We thus see that our present spectral sequence extends that of [8]. As 
in [8], but for non-pointed X', we use 

3.1. The derived homotopy exact sequence. For r > 1 and s = 0, let 
b~Tots+r_~X" be a vertex. Then for i > 0 ,  let n i (TohX ' , b )  tr-l) denote 
the image of 

7ti(Tots+r-I X', b) ~ hi(Tots X', b). 

Consider the fiber Fibs(X', b) of To t sX '~Tot s_~X"  at the projected vertex 
b ~TotsX' .  Let C~ c n~ Fibs(X', b) be the counterimage of  n~(Tots X', b) ('-1) 
under  ni Fib,(X', b)-~ ni(Tot~ X', b), and let K~ +~ C ni + 1(Tots_ i X', b) be the 
kernel of 

n~ + i(Tots - i X', b) --'- ni + 1(Tots_, X', b). 

Then form the group 

7ti Fibs(X*, b) ('-1) = Ci/O.Ki+I for i > 1 

and the orbit set 7t0 Fibs(X', b) (~- l) of  Co under the fibration fight-action by Ki 
when i = 0. There is now a derived homotopy exact sequence 

. . . .  7t/+l(Tot~_r+l X', b) ( r - l )~  ni+m(Tot~-r X*, b) (~-I) 

O 
*, 7t~ Fibs(X*, b) (r- ~)--" n~(Tots X*, b) (~- 1)__, 7tt(Tot~_ ~ X', b) ( '- m) 

which is natural in X" and b E Tots +~_ 1 -~, i.e. for cosimplicial maps and path 
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classes in Tot,+,_ ~ X'. All of its maps are group homomorphisms except for 
the last three when i = 0. However, there is a fibration right-action • by 
7tl(Tots_r X°, b) Cr-l) on the set ~z0 Fib~(X', b) t'-~), such that O.(g)= 0 . g  for 
each g E n~(Tot,_r X', b) ~'- 1) and such that elements of 7t0(Fibs (X', b) ~`- 1) are 
in the same orbit iff they have the same image in n0(Tot, X', b) (r-l). The 
formula O,(g)  = 0 , g  implies that elements of n~(Tot,_, X', b) ~'- 1) are in the 
same right coset of ker 0. iff they have the same image in 7to Fib,(X', b) (r- l). 
Letting dr denote the composite of 

7Ci + l(Fibs_r Xe, b )~'- l)--. r~i + a(Tot,_r X ' ,  b )~- z) 
o 

, 7ei Fibs(X', b) c'- ~, 

when s > r, we recover the homotopy spectral sequence of [8, p. 281] with 
E: t e rm  {n~ Fib,(X', b) t '- ~)} when b E T o t  X'. 

3.2. Replacing n~Fib,(X', b) by Nn~+,(X', b). Let b~Tot~X"  be a vertex 
for s >_- 0. By 10.2, there is a natural isomorphism 

(I) : 7[ i Fibs(X', b) ~, Nrci + s(X', b) 

of  groups for i > 1 and of pointed sets for i = 0. For s > k > 0, m >= 0, and 
t > 1, thefundamen tal right-action of  n~ (TOtk X', b) on the group Nnt (X m , b) is 

defined via 

n~(Totk X', b) --- hi(Tot0 X', b) = nl(X °, b) 

from the fight-action of nt(X °, b) on nt(X m, b) in 2.1. By the naturality o f ~ ,  

the fundamental  action of  rq(TotsX', b) on n~Fibs(X',b),~Nreg+~(X',b) 
agrees with the fibration action. By 10.5, for s > 1 the fibration boundary 

0,  : n~(Tot,_ ~ X', b)---- no Fib,(X', b) ~ Nn~(X ~, b) 

is a crossed-homomorphim with respect to the fundamental  action of  
n~(Tot,_ ~ X', b), and the crossed-homomorphism action (2.2) agrees with the 
fibration action of nl(TOh _ ~ X', b) on no Fib,(X', b) ~ Nns(X ~, b). 

3.3. Replacing n;Fibs(X', b) (r-l) by ES'S+i(X °, b). For r > 1 and s > 0, let 

b ETots+r_l  X" be a vertex liftable to Toh,_2X" (or to Tot2,_3X" when 
[TttX" , 7t.X'] = 0 for 1 < t < 2r - 3). Then by 11.5, the above • induces a 
bijection 

: ni Fibs(X', b) ~'- 1) ,~ E:,~ +i(X, ' b) for i > 0 
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which is a group isomorphism for i > 1 and is natural in X" and b. Using ~,  the 
derived homotopy exact sequence of 3.1 becomes 

. . . .  :,ti+l(Tot,_r+~ X', b)cr- ~)~ ~i+~(ToL_r X ", b) v-~) 

# 
*, Ep'+~(X ", b)---n~(Tot, X', b) <r-~)--" n~(Tot,_ x X', b) ('- ~). 

Thus, when r > s > O  and i>=O, E~,"+~(X',b) is the kernel of  
xi(Tot, X', b)('-~)~ lt~(Tot,-~ X', b) ('-~). By 3.2 when r < s, 

0 . :  nl(Tot,_r X', b)<r-l)--" E~,'~(X ", b) 

is a crossed-homomorphism with respect to the fundamental action of 
n~(Tot,_, X', b) ('- 1) on the group E;'~(X ", b), and the crossed-homomorphism 
action (2.2) agrees with the fibration action (3.1) of rh(Tot~_rX', b) ('-~) on 
EJ-'(X', b). Finally, when s > r, the composition of 

ESr-r's-r+i+l(X =, b)--'rri+l(Tots_r X~, b)(r-1)--}ESr'~+i(Xl , b) 

equals the differential dr of 2.4. Thus we have 

3.4. Agreement of spectral sequences. For any b E Tot X', the homotopy 
spectral sequence {EJ,t(X ", b)} of 2.4 extends the tower spectral sequence of 

[8, p. 281]. 

~4. Convergence of the homotopy spectral sequence 

For a fibrant cosimplicial space X" and vertex b ~ Tot X*, we now show that 
{Ej.t(X *, b)} converges to {nt_s(Tot X*, b)} under suitable conditions. The 
problem of initially finding a vertex b ~ Tot X* will be discussed in Sections 5 
and 6. First, we need 

4.1. Infinitely derived towers of sets. For a tower { T, },ez of sets Ts and 
functions T, ~ 7;',_ 1, let ~') denote the image of I", +, --* T~ for 0 < r < ~ ;  let 
~®) = N, ~'); and let ~ + )  denote the image of the projection lim~ T~ ~ Ts. 
Also, for an element v~ T,_~ and any r, let T~(v) (r) denote the set of all x E ~r) 
projecting to v. Clearly ~®+) c ~®) and T~(v) (®+) c T~(v) (®), where the inclu- 
sions may be proper since an element of T, may be "arbitrarily highly liftable" 
yet not "consistently infinitely liftable." The condition ~® +) = ~®) holds for 
each s if and only if T~(v) (~+) = T,(v) (~) holds for each s and vE T,_~. These 
equivalent conditions hold whenever: (i) { T, } can be topologized as a tower of 
compact Hausdorff spaces and continuous maps; or (ii) the descending se- 
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quence {T,(v)(r)}o<_,<® is eventually constant for each s and vET,_I. This 
follows in case (i) since the inverse limit of a tower of nonempty compact 
Hausdorif spaces is nonempty by a Tychonoff argument. Better results hold 
when { T, } is a tower of (possibly nonabelian) groups and homomorphisms 
with T, = 0 for s < 0. Then, the condition Z oo+) - ~®) holds for each s if and 
only if T,(0) (®+) -- T,(0) (®) holds for each s. Also then, by the proof of the 
complete convergence lemma of [8, p. 263], the combined conditions ~® +) = 
~ )  and lim~m Tm = 0 hold for each s if and only if lim~ To(0) (') = 0 holds for 
each s. Moreover, these combined conditions hold whenever: (i) { T, } can be 
topologized as a tower of compact Hausdorff groups (or linearly compact 
~-groups [ 15]) and continuous homomorphisms; or (ii) the descending se- 
quence { To(0) (')} is eventually constant for each s. This follows in case (i) by 
[15, 3.1 and 3.2]. 

4.2. Complete convergence of {E:.I(X', b)}. For a vertex b ~ T o t  X', con- 
sider the homotopy spectral sequence {E:.t(X ", b)} and let 

E~t(X*, b) = (") E:,t(X', b) for t > s > 0. 
/'2>$ 

Then E~t(X *, b) is a pointed set when t = s, a group when (s, t) = (0, 1), and an 
abelian group with right-action by E~I(X ", b) otherwise. By 3.3, E,~,'(X ", b) is 
the kernel of 

lr t_~(Tot~ X', b) ( '- 1)~ xt-~(Tot,- i X*, b) (r- 1) when t > s > 0 and r > s, 

and thus E~'(X*, b) is the kernel of nt_~(Tot~ X', b) (®)--* x/_~(Tot~_ i X', b) (®). 
For t > s > 0, let E~t+ (X*, b) denote the kernel of 

~t_~(Tot~ X', b) (®+)=- ~,_~(Tot,_ ~X', b) (®+) 

as a pointed set when t -- s, a group when (s, t) = (0, 1), and an abelian 
group with right-action by 0.1 E®+(X', b) = 7rl(X °, b) (®+) otherwise. Then 
E® + (X', b) c E~t(X ", b) as a subobject for t > s > 0. As in [8, p. 254], there is a 
short exact sequence 

0 ~ lim~ xi+l(Tot~ X', b) ~ x~(Tot X', b ) ~  limo lrt(Tot~ X', b ) -*0  

of  a pointed sets for i ---0 and groups for i > 1. Thus 7r~(Toto X', b) (®+) is the 
image of  xi(Tot X', b)--* xi(Toto X', b), and {zri(Tot~ X', b)(®+)}~,.0 is a surjec- 
t i re  tower with 

xi(Tot X', b)--) lim~ xi(Tot~ X', b) (®+) 
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surjective for each i > 0. Consequently, the elements in the tower kernels 
Es~++i(X ", b) are all hit by elements of hi(Tot X*, b), while the remaining 
elements of  E~+i(X ", b) are not. Given i > 0, we say that {E~,'(X', b)} 
converges completely to rtt_s(Tot X', b ) f o r  t - s  = i when E~;~++i(X ", b)--- 
E~'~+i(X ", b) for all s > 0 and n~(Tot X', b ) ~ l i m s  7ri(TotsX', b) has trivial 
kernel. This last condition holds iff lim] 7ti+~(Tots X*, b) is trivial or, when 
i > 1, holds iff Try(Tot X', b) --- lims n;(Tots X*, b) is iso. 

4.3. Convergence results for {E~,t(X ", b)}. Applying 4.1 to appropriate 
subtowers of  {try(Tots X', b)}, we obtain the following convergence results at a 
vertex b E Tot X'. First as in [8, p. 263], for i > 1, the combined conditions 

s,s + i E~+ (X', b) -- -o~F"~+~t x,'.,__, b) and lim 1 7t~(Totm X', b) = 0 hold for each s => 0 if 
and only if lim~ E,~,s+;(X *, b ) =  0 holds for each s > 0. These combined 
conditions hold whenever: (i) {hi(Tots X', b)} can be topologized as a tower of 
compact Hausdortf  groups (or linearly compact ~-groups [15]) and con- 
tinuous homomorphisms;  or (ii) for each s > 0 there exists r < oo with 
E~,.~+i(X',b)=E~.~+~(X',b). Also for i > l  and j > l ,  the condition 
E~++'(X ", b) --- E~S +~(X ", b) holds for each s > j  - 1 whenever 

• 1 s , s + i  hm,  E; (X', b)---0 holds for each s > j .  Next for i = 0, the condition 
E~+ (X', b) = E~(X ", b) holds for each s > 0 whenever { no Tots X'} can be 
topologized as a tower of  compact Hausdortf  spaces and continuous maps. Our 
remaining results for i = 0 may be slightly improved, using the modifications 
indicated in square brackets, when 

[Tit X', n .X ' ]  = 0 for 1 < t < r - 1 

as in 2.6. Given r _-> 1 [r > 2], if E~'~-~(X ", b) -- 0 for all sufficiently large s, 
then E~+(X ", b)-= E~(X ", b) for all s >-_ r Is > r -  1]. Given r >= 1 and 
k > r + 1 [r > 2 and k >_- r], if E~'~(X ", b) is finite for all s > k, then 

E~o% (X ~, b) = E~(X *, b) for all s > k - 1. 

When X" is not termwise connected, it is convenient to focus on 

4.4. Components of X ~. By 10.7 there is a natural correspondence 

(Tt0 Tot0 X') ~) ~ x°n0 X" -- {aE n0X°l d°a ~- d~a}. 

For each element a ~ n°noX ", let X~ c X" be the cosimplicial subspace consist- 
ing of  the connected components X~ c X m at a, and let X~ -- H, X~, c X*. Then 
X~ and X~ are fibrant and 
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I_[ Tot", X~ -= Tot", X~ = Tot., X" 
ct 

for 1 < m _-__ ~ where Toto~ = Tot. A vertex b ~ T o t  X" determines a connected 
component  X~b with the same spectral sequence 

(E~"(X~b, b)} = (E~'t(X', b)} for (s, t) ÷ (0, 0), 

with hi(Tot X~b, b) = hi(Tot X', b) for i > 0, and with n0(Tot X~b, b) = 
Flrt0(Tot X ~, b) where, more generally, Fln0(Tots X', b) denotes the kernel of 
zt0(Tot , X', b) ~ rt0(Tot0 X*, b). We say that (E~.t(X ", b)} converges completely 
to F~lto(Tot iV', b) for t - s = 0 when E~+ (X', b) = E~'(X ", b) for all s > 1 and 
Ftlto(Tot X', b ) ~  lim~ Flrt0(Tot, X', b) has trivial kernel. This is equivalent to 
saying that {E~'t(X~b, b)} converges completely to n0(Tot X~b, b) for t - s = 0. 
Now, amplifying parts of 4.3, we obtain 

4.5. E2-criteria for complete convergence. For a given vertex b E Tot X', 
suppose that each arbitrarily highly liftable vertex a ETOtl X ~ with ao = 
boEX ° is such that: (i) for each i > - 1, ns;t~+~(X ", a) = 0 for all sufficiently 
large s; or (ii) ;t'rt~÷~(X ", b) is finite for each s, i > 0 except possibly for 
(s, i) -- (0, 0). Then {E~.t(X ", b)) converges completely to rtt_s(Tot X', b) for 

t - s > 0 and to Fbto(Tot X', b) for t - s = 0; thus 

;ti(Tot X', b) ~ lim, rti(Tot, X', b) for each i :> 0, 

E,,~+~ r .  b) -- EL~+~(X ", b) for each s, i > 0 except possibly for (s, i) = (0, 0), o0  -4- I ~ ' L  , 

and F~no(Tot X', b) ~ lims F~n0(Tot~ X', b). 
We conclude with a compact Hausdorff criterion for complete convergence, 

which will require some preliminaries. "Space" will temporarily mean "topolo- 
gical space". Let f0, f~ : A ~ B be continuous maps between compact Hausdorff 
spaces A and B, and let -~ be the equivalence relation on B generated by the 

elementary equivalences f0(a)"~ f~(a) for a ~A.  Let C = B~ ~ and suppose 
that each equivalence class c E C has a representative s~ E B such that the 
members  o fc  are all elementarily equivalent to & (i.e. for each b ~ c there exists 

a EA with f0(a) --- b and f~(a) = s~). Then 

LEMMA 4.6. The quotient topology of  C is compact Hausdorff, and the 
quotient map B ~ C is the coequalizer of  fb f: : A ~ B  in the category oJ 
compact Hausdorff spaces. 

PROOF. The compactness of  C is immediate. By [17, p. 146] the quotient 
function e:B-- ,  C is an absolute coequalizer off0, f~ :A ~ B  in the category 
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of sets, because there are obvious splitting functions s : C -~ B and t : B ~ A 
with es = 1, f0t = 1, and f i t  = se. The lemma now follows from the proof in 
[ 17, pp. 153-155] that the forgetful functor from compact Hausdorif spaces to 
sets is monadic. 

PROPOSITION 4.7. Let L be a simplicial compact Hausdorff  space which is 
fibrant as a simplicial set. Then 7roL is naturally a compact Hausdorff  space 
and ~,(L,  v) is naturally a compact Hausdorff  group for each n > 0 and 

vertex vE L.  

PROOF. The quotient space ~roL of L0 is compact Hausdortfby 4.6 since the 
elementary equivalences determined by do, dl : L~ ~ L0 form an equivalence 
relation. Likewise, the quotient space ~,(L,  v) of L, --dc'(v) A . . .  A d~"(v) 
is compact Hausdortf by 4.6 applied to do, d~ :L~' + ,~ /~ ,  where 

L ' + ,  = n n n . . .  n d;+',(O 

Finally, the subtraction operation 7r. (L, v) × rE. (L, v )~  :r. (L, 0 is continuous 
since it is induced by the quotient maps (d,, do) : L "  +, -~ ~. (L, v) × :r. (L, v) 
and d~ : L "  +, ~ rr. (L, 0 where 

L'~+, = do- l(Ln) N dl- 1([ .)  A d2- l(Ln) A d3-1(z)) A . . .  N dn-ll(1)). 

We hope to further investigate compact homotopy theory, but we now 
combine 4.7 with 4.3 to give 

4.8. A compact Hausdorff criterion for complete convergence. Suppose that 
{Tot, X'} is weakly equivalent to a continuous tower of simplicial compact 
Hausdortf spaces which are fibrant as simplicial sets. Then, for each vertex 
b ETot X', {E~,'(X', b)} converges completely to lrt_,(Tot X', b) for each 
t - s > 0. This applies, for instance, when X" can be topologized as a cosimpli- 
cial simplicial compact Hausdortf space, or when lri(Tot, X', v) is finite for 
each i, s > 0 and each vertex vEToL X'. In the latter case we may construct a 
weak equivalence from (Tot, X'} to a tower of minimal fibrations of fibrant 
simplicial finite sets. 

§5. Cosimplicial obstruction theory 

Let X" remain a fibrant cosimplicial space. We shall develop an obstruction 
theory for liftings of vertices and paths in the tower {TOtm X'}m >0" 
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5.1. The obstruction cocycle c(b). By 10.7 for m > 0, a vertex b ETotm X ~ 

lifts to T o t / +  1 X~ if  and only if the map b m + l : 2Ira + 1 __~ X m + t is nullhomotopic. 

Thus a vertex b EToto X" = X ° lifts to Toh X" if and only if [b]E 7toX ° belongs 
to n°n0 X'. For a more detailed analysis when m > 1, we define the obstruction 

cocyde c(b)~NTtm(X m+l, b) t o  b e  the class of  b m+l" (~m+l, 0)__~(xm+l ,  b )  

using the "reverse orientation" of 2[ m+~, i.e. using an equivalence 

](/~m+l, 0)l  ~ [(S m, * ) l  making [--191m+l]~..Hm ~m+l correspond to [lm]~ 
nm(Am/~ m) ---- nm Sm . Thus 

c(b) = [dlbq[d°bl]-l[d2bl]-I when m -- 1. 

In general by 10.7 and 12.12, c(b)~NTtm(X m+l, v) has the properties: 
(i) c(b) is natural in X" and in b, i.e. for cosimplicial maps and paths in 

TOtm X ~. 

(ii) c(b) = 0 if and only i fb  lifts to To t /+ t  X'. 
(iii) c(b) lives to the highest term ET'+ ~.m(X ", b) defined by 2.4, 2.5, or 2.6. 

Thus it lives to the term with t ffi [(m + 2)/2] in general, and with 

t = [(m + 3)/2] when X" has vanishing Whitehead products. 
We now introduce the higher order obstructions. 

5.2. Obstructions to lifting vertices. For m _->_ 0 and r _-> 1, suppose that a 
vertex b ~ Totm X" is liftable to Totm + r- 1 X'. Then the rth order obstruction 
class ~,(b) cN~tm+r_l(xm+',b) is the set of  all c(/~) for vertices 6 ~  
Totm + •_ ~ X" lifting b. Clearly b E Totm X" is liftable to Totm +r X" if and only if 
0~¢ , (b ) .  Now suppose r < m  + 1 or r f f im  + 2  with [:ttX~, l t . X ' ] - - 0  for 
1 _-< t -_< 2m + 1 using the notation of  2.6. Then, by 5.1 and 5.3 below, ¢,(b) is a 
coset forming an rth order obstruction element to,( b ) E E,~ + '.m +'- l ( r ,  b ) 
which has the properties: 

(i) to,(b) is natural in X" and b. 

(ii) to,(b) = 0 if and only if b is liftable to TOtm+, XL 
(iii) to~(b) lives to the highest term Ef~+"m+'-~(X ~, b) defined by 2.4, 2.5, 

or 2.6. 
There is a convenient alternative version of  this obstruction. For a vertex 
a ~ Torn X" with n > 0, suppose that 1 _-< r < (n + 2)/2 or r ffi (n + 3)/2 with 
[ntX', l t .X']  ffi 0 for 1 < t _-< n. Then the rth order obstruction element },t(a)E 
E~ +l.n(X TM, a) is defined by y,(a) = to,(an_,+ 0. Clearly y,(a) -- 0 if  and only if 
the projection o f a  E Tot~ X" to Tot~ _, + ~ X" lifts to Totn + ~ X'. Moreover, when 
y,+~(a)EE,~++II'n(X', b) is defined, it is given by [y,(a)]. 
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5.3. The difference cochain D(a, J, b). For vertices a, b~To tmX* with 

m > 1 and a path J :  A 1 - *  TOtm _ 1 X* from a m _ I tO b m _ 1, the difference cochain 
D( a, J, b ) E NT~m(X m, b )  is represented by a map 

(a J)  m I_I b" : A m HA= A m ~ X m 

using the "left minus right" orientation, where aJ  ~ TOtm X* is the endpoint  of  
a path from a ~TOtm X" lifting J. Equivalently, D(a, J,  b) = q~([a][J]) using 
the bijection 

: n0 Fibm(X', b) ~ S ] [ m ( X  m , b) 

of 10.2. Thus D(a, J, b) = [dIj]- '[a '][d°J][b~] -1 when m = 1. We denote 

D(a, 1, b) by D(a,b) when am-i = b m - l .  In general, by Sections 10-12, 
D( a, J, b)E NT[m( X m , b) has the following properties: 

(i) D(a, J, b) is natural in X" and in (a, J ,  b). 
(ii) D(a, J, b) = 0 if and only if J lifts to a path from a to b. 

(iii) If  a = b  then D(b ,J ,b )=O.[J ]  using O.:x,  TOtm_l(X' ,b)~ 
NT[m(X m, b) of 3.2. 

(iv) D(a, J, b)[K] + D(b, K, c) = D(a, JK, c) for each vertex c ~Totm X ° 
and path K:  A 1 --*Tot,,_, X" from bm-~ to Cm-, where [JK] = [J][K]. 

(v) I f  m > 2  or m = l  with c(b) in the center of  nl(X 2,b), then 
OD(a, J, b) = c(b ) - c(a)[ J] in STCm(X re+l, b ). More generally, for 

r > 1, suppose that a, b ~ TOtm X" lift to vertices a, 5 E Tot,, +,_, X', 
where 6 is sufficiently liftable so that Erm4'~(X ", 6) is defined by 2.4, 2.5, 
or 2.6. Then D(a,J ,  b) lives to Em'm(X ", 6) and dr[D(a,J, b)] = 
[c(d)[J] - c(6)] in the target ET' +r,m +r-- l(XO ' 6) of the differential dr on 
Em'm(x ", 6). This target has t = min{r,  m} in general, and has t = 
min{r,  m + 1 } when X" has vanishing Whitehead products. 

(vi) For each element o t ~ N T t m ( X  m, b )  there exists a lifting a 'ETOtm X" of 
J(0)ETOtm-1 X" with D(a', J, b) = a. 

(vii) For r > 1 suppose that b ~ TOtm X* lifts to a vertex 6 E Totm +,_ 1 A~ 
which is sufficiently liftable so that Em~'~(X ", 6) is defined by 2.4, 2.5, or 
2.6. I f  D(a, J, b) lives to Em'm(x ", 6) and if ot~NT[m+r_l(X re+r, 6) is 
an element with dr[D(a, J, b)] = [a] in the target Efn+r'rn+r-l(X ~, 6) 
of dr, then a E T o t m X "  lifts to a vertex a~To tm+, -1  X" with a =  
c(a)[J] - c(6) in N7[ m +r-I (  Xm+t, ~)" 

5.4. Obstructions to lifting paths. For m >_- - 1 and r _>- 1 with m + r > 1, 
suppose that a, b E Totm +r X* are vertices and J :  A' ~ T o t / X "  is a path from 

a m t o  bm liftable to a path from a m + •_  1 t o  b m + r -  1 in TOtm + r -  1 X~- Then the rth 
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order obstruction class ~, (a ,  J,  b) c NIZm+r(X re+r, b) is the set of all D(a, J, b) 

for paths J :  A ~ ---- TOtm +r- l X" from a,, +,_, to br, +r- ~ lifting J. Clearly J :  A l ---" 

TOtmX" is liftable to a path from a to b in TOtm+rX" if and only if 0E  

~r(a, J, b). Now suppose that a, b ~Totm +,X" are liftable to Tot"+2,_, X'. 
Then, by 5.3 and 5.5 below, ~ , (a ,  J,  b) is a coset forming an rth order 
obstruction element Vr( a, J, b)E E y + r,m +r( X.  ' b) which has the properties: 

(i) Vr(a, J, b) is natural in X" and in (a, J,  b). 
(ii) V,(a, J,  b) = 0 if and only if J is liftable to a path from a to b in 

TOtm + r X'. 
(iii) If a = b then V,(b, J ,  b) = O,[J] using a ,"  ni Tot"(X',  b) ( ' -~)~ 

Erm +"" +'(X ", b) of  3.3. 

(iv) Let c~Tol"+r X" be another vertex liftable to Totm+2,_, X', and let 

K: A I ---- Tot" X" be a path from bm to c" liftable to a path from bm +r-, 
tOCm+r-, in TOtm+r-i X'. I fm  > 0 o r i f m  = - 1 with [~ztX" , ~z,X']  = 0 

for 1 < t _< r -- 1, then V,(a, J,  b)[K] + Vr(b, K, c) = Vr(a, JK, C). 
(v) If m > 0 or m = -  1 with [gt X', Jz.X'] = 0 for 1 < t < r -  1, then 

d~Vr(a, J, b) = og,(a)[J] - wr(b) in E~+2~'"+2"-'(X ", b). I f a  and b lift 

to vertices d , / ~ T o t " + ~ + t - i  X" with t > r, then Vr(a,J, b) lives to 
Ey+"m+r(X ", 6); and if a and b lift to vertices a , /~ETot  X', then 
Vr(a , J, b) lives " +r,m +r to E~ + (X',/~). 

(vi) Let K: A l---TOtm X" be a path ending at b" with lifting K: A ~ 
Totm+r_  I X" ending at  bm+r-l. For an element otEErm+r'm+r(x ", b) 
there exists a vertex c ETotm+.X" liftable to T o t " + 2 r - i  X" with 

Cm+,-~ = / ( ( 0 )  and with V,(c, K, b) = a. 
As in 5.2, there is a convenient alternative version of this obstruction. For 

vertices a, b ETo t  X', let K: A' --- Tot, X" be a path from a, to b, with n > 0, 
and suppose that 1 _-< r _-< n + 2. Then the rth order obstruction element 
A,(a, K, b)~E,"+~'"+~(X ", b) is defined by A,(a, K, b) = V,(a, K,_r+,, b). 
Clearly A,(a, K, b) = 0 if and only if the projection o f K t o  Tot,_r+~ X" lifts to 

a path from a,+, to b.+, in Tot.+, X'. The element A,(a, K, b) always lifts to 

~',+l,n+lt r .  b). Moreover, when A,+~(a, K, b )=  ~'"+1'"+1( X ' , ~ - - , r + ~  b) is defined, it 

is given by [Ar(a, K, b)]. We have implicitly used 

5.5. The difference cochain D'(K, L). For m > 0 let K, L : A ~ ---Tot" X ' b e  

paths from a vertex a E Torn X" to a vertex b E Tot" X" such that K and L 

project to the same path J :  A ' ~ Tot,, _ ~ X'. The difference cochain D'(K, L) E 
Nnm + ,(X m, b) is given by ¢ ( [ L -  ~K]) using the isomorphism 

~ "  7t I Fibm(X', b ) ~  NTtm+I(X m, b) 
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of  10.2, where the loop L -  ~K is homotoped to Fib.,(X ~, b) over the canonical 
contraction of j - i j .  In general by Sections 10 and 11, D'(K,L)E 
Nrtm + ~(X m, b) has the following properties: 

(i) D'(K, L) is natural in X" and (K, L). 
(ii) D'(K, L) = 0 if and only if K is path homotopic  to L through liftings 

of J. 
(iii) D'(L, M) + D'(K, L) = D'(K, M) for each path M :  A ~ ---- Totm X" from 

a to b lifting J. 
(iv) I f  a, b E Totm X" respectively lift to vertices a, t /E  TOtm + t X', then 

6D'(K, L) = O.[L-~K] = - D(a, L, g)[L-~K] + D(a, K, 5) 

in Nn., +~(X", +t6), where D(a, L, g)[L-tK] = D(a, L, 6) when m > 1. 

More generally for r > 1 suppose that a, b ETOtm X" and K, L : A ~ --- 
TotmX" respectively lift to vertices a, 5~Totm+~X" and paths 
K, [ :  A l --'-Totm +r-~ X" from am+r-~ tO 6m +~-i, where 5 is  sufficiently 
liftable so that ,.,,~'m."+t¢Y'+~ ~ , ,  6) is defined by 2.4, 2.5, or 2.6. Then 
D'(K, L) lives to ET.., + ~(X', 6) and 

d,[D'(K, L)] = [a.[/S- ~g]] = [ - D(a, £, g) [L-  ~KI + D(a, £,  6)] 

(v) 

(vi) 

in ET'+"m+r(X ", g), where D(d,L,  5)[L-~K] = D(a,L, 5) when 
m > l .  
For each element aENnm+~(X m, b), there exists a path K'  :A t---- 
Tot., X" from a to b lifting J with D'(K', L)  = a. 
For r >_- 2 suppose that a, b ~ Tot,, X" and L : A t --- Tot,, X" respectively 
lift to vertices a, 6ETotm+,X"  and path £ :Al--"Totm+r_~ X ~ from 
am +,- ~ to 6m +r- Z, where/ / is  sufficiently liftable so that E~¢"/+ ~(X', 6) is 
defined by 2.4, 2.5, and 2.6. If  D'(K, L) lives to E,~,.,+~(X TM,//) and if 
a~-Nnm+,(X.,+',6) is an element with dr[D'(K,L)]=[a] in 
E~+"m+'(X' ,6) ,  then K:A~-- -Tot . ,X " lifts to a path /( ' :A 1--- 
Totm+,_~ X" from a,n+r-~ to 6m+~-~ with 

a = O . [ £ - ' g ]  -- - D(a, [ ,  6 ) [L- 'KI  + D(a, Ill, 6) 

in NTtrn+r(X re+r, g), where D(a, £ ,  6)[L-~K] = D(a, £, 6) when 

m > l .  
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§6. Connectivity and comparison results 

For a fibrant cosimplicial space X', we now apply our homotopy spectral 

sequence and obstruction machinery to derive some connectivity and compar- 

ison results for Tot X'. 

6.1. Nonemptyness of Tot X'. If  X" is pointed, or has a nonempty augmen- 

tation, then clearly Tot X" is nonempty. In general by 4.4, Tot X" is the disjoint 

union of the Tot X~ for c~E~°~z0X'~ (~0 v.,o) Toto A-) , so the connected compo- 
nents X~ c X" may be inspected individually. Moreover, by 14.4, there is a 

bijection ~ f d X ~  ~ ( ~ o T o h  X~) °) so ~ Tot2 X~ is nonempty iff ZE'~dX~ is 

nonempty. Various other nonemptyncss results follow by obstruction theory. 

For instance, for r ~ 1 if a vertex b~Tot ,_~ X" lifts to Toh,_2X" and if 

Ek, ,k- ~ (X',  b) = 0 for all k ->__ 2r - 1, then b lifts to Tot X'. Likewise, for r >_- 2 if 

a vertex b ETot,_2 X" lifts to TOt2r-3 X" where [xtX', ~ ,X ' ]  = 0 for 1 ___< t _-< 
2r - 3 and if Ek, ,k- ~ (X', b) = 0 for all k >_- 2r - 2, then b lifts to Tot X'. On 

the other hand, if X" ~. Skm/Y.[ then TOtk X" is empty for k > m. 

6.2. Connectivity of Tot X'. When Tot X" is nonempty we may form 

{E,(X', b)} at a vertex b ~ Tot X" and use convergence results of  Section 4 or 

[8] to study 7t .(TotX' ,b) .  Thus, for b ~ T o t X  ~, m > 0 ,  and r > 1, if 

E:'~+i(X ", b) = 0 whenever s > 0 and 0 < i _-< m, then Tot X" is m-connected. 

6.3. A comparison theorem. Let f :  X" ~ Y" be a map offibrant cosimplicial 
spaces. It is well-known [8, p. 277] that if  f :  X s ~ YS for each s >_- 0, then 

Tot f :  Tot X'--~ Tot Y'. By 3.3 and 5.2, this conclusion follows using much 
weaker hypotheses at the Er-level. Suppose r ->_ 1 and 

f ,  : (~0 Tot,_ 1 Xm) (r-  1) ,~ (7[0 Tot,_ l X')( ' -  1). 

For each [b] E(lt0 Tot,_ ~ X') ('-1) suppose that f . :  E: ~ +'(X', b ) - -  

E ~ / + i ( Y ' , f b )  is: (i) mono for i > - 1 and s > 2 r  - 1; (ii) iso for i = 0  and 

s > r; and (iii) iso for i > 1 and s > 0. Then 

f , :  (~0 TOts X') (r- ~) ~ (~0 TOts Y')('- ~) for each m >_- r - 1, 

and 
f .  : tti(TOtm X w, b)(,- l) ~ lr~(TOts Y', f b )  ('- i) 

for each vertex b ~ Tots + 2r- 2 X° with m > 0 and i > 1 .  
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Consequently, {Tot, f }  : {Tot, X'} ~ {Tots Y'} is a weak prohomotopy equi- 
valence (see [6, 8.5]) and Tot f :  Tot X" = Tot II.. 

Alternatively, suppose r _-_ 2 and f ,  : (no Tot,_2 X') ( '- t) ~ (rt0 Totr_2 X') (r- ~) 

with [niX', n ,X ' ]  = 0 for 1 =< t < 2r - 3. For each IbiS(no Tot,_z X') ('-~) 

suppose that f , : E ~ / + i ( X ' , b ) - , E l ~ + ~ ( Y ' , f b )  is: (i) mono for i >=-  1 and 

s >_- 2r - 2; (ii) iso for i = 0 and s _-_ r - 1; and (iii) iso for i >_- 1 and s _>- 0. 
Then 

and 

f ,  : (no Tot,, X') (~- i) ~ (no Tot", yo)(r  - 1) for each m _-> r - 2, 

f ,  : ni(Tot", X', b) ¢r- i) ~ hi(Tot", Y', f b )  ~'- i) 

for each vertex b ~ Tot,. + z~-z X" with m > 0 and i >_- 1. 

Consequently, Tot f :  Tot X" --~ Tot Y" as above. For instance, i f f :  X" ~ II" is a 

map o f  fibrant, termwise simple, cosimplicial spaces such that f , :  nsntX " ~  - 

nSnt Y" is mono for t = s - 1 >= 1 and iso for t >= s > O, then Tot f :  Tot X" --~ 
Tot ]I". This instance also follows from 

6.4. A simple derived homotopy exact sequence. Let X" be a termwise 

simple fibrant cosimplicial space. Then for m > 1 there is an exact sequence 

(n0Tot",X') °) J , (n0Tot",_~ . ,~)(I)  t°2, ~m+ln",X • 

wherej  is the tower map and o92 is the lifting obstruction of  5.2, and there is a 

natural left action by the group n"n,,X" on the set (no Tot,. X') °) such that 

elements of(n0 Tot,. X') °) are in the same orbit iffthey have the same image in 
(n0 Tot",_~ X') °). For each vertex b ETot",+l X" and element u ~ n"n,,X" ..~ 
n",n",(X', b), this action produces an element 

u + [b] ~(no Tot" X') o) ~ no(Tot", X', b) °) 

which equals the image of u within the derived homotopy exact sequence 

. . . .  nl(Tot"_ IX',  b) ° ) ~  nl(Tot"-2 X', b) °) 

---n",n,.(X', b ) ~  n0(Tot,. X', b) o ) ~  fro(Tot",_ ~X', b) 

of  3.3. Furthermore, there exists a vertex c ETot",+~ X" with u + [b] -- [c], 

c",_t = b,._~, and V2(c, 1, b) = u by 5.4. The ordinary obstruction theoretic 
Hopf-Whitney-Eilenberg classification theorem now generalizes to 

6.5. A simple classification theorem. Let X" remain a termwise simple 
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fibrant cosimplicial space, and for some q >_- 1 suppose that: ztsz~_ 1 x ~  ~--- 0 for 
all s >_- 2; 7t~zc~X " = 0 for all s ~ q; and zt~z~+ ~X TM = 0 whenever 0 _-< s _-< q - 2. 
Then there are natural bijections 

:to Tot X" ~ (zt0 Totq X') t~) ~ 7tq~q X ". 

§7. A classical homotopy spectral sequence 

Before turning to the unstable Adams spectral sequence, we discuss a 
classical homotopy spectral sequence and associated obstructions for 
unpointed mapping spaces [4], [13]. Our discussion can easily be adapted to 
the pointed case. 

7.1. The cosimplicial setup. For a space K and fibrant space L,  we form the 
fibrant cosimplicial space Map'(K, L) where Map"(K, L)  is a product of  
copies of L indexed by the m-simplices of K. As in [8, p. 271], 

Tot Map'(K, L)  = Map(K, L) and (Tots Map'(K, L)} = {Map(SksK, L)). 

The connected components (4.4) of Map'(K, L) correspond to members of 

[SkoK, L] tl) ~ rt°rto Map'(K, L)  ~ [~oK, rtoL] 

where [rtoK, noL] consists of functions rtoK---" rtoL, and as in 14.4 

[Sk,K, L] ~l) ,~ Itlztf d Map'(K, L) ,~ [TtfdK, 7t~dL ] 

where [nfdK, nfdL] consists of the functors ztfdK ~ nfdL modulo natural equi- 
valences. For a map b: Sk~K-~L extendable to Sk2K, nszt~(Map'(K, L), b) is 
given by [noK, zt0L] for (s, t ) = ( 0 , 0 )  and by the twisted cohomology 
HS(K; nlL)b, associated with b .  : ztfaK - ,  ztfdL for s >= 0 and t _--_ 1. 

7.2. The classical homotopy spectral sequence and obstructions. For a 
map b:K-- ,L ,  we obtain the classical homotopy spectral sequence 
{E],I(Map'(K, L), b)} from 2.4 with 

E~'t(Map'(K,L),b)=HS(K;ntL)b. fo rs  >_-0 and t > 1; 

more generally, for a map b : SkmK -~ L extendable over Sk2mK with m >_- 1, we 
obtain a truncated version of this spectral sequence defined for 1 -<_ r _-< m + 1. 
Each groupoid map ztfaK ~ ~tfaL is induced by a suitable map Sk2K-~ L. By 
5.2, for any map b : S k . K ~ L  with n >_-2, there are obstructions ? ,(b)~ 
E~"+I,"(Map'(K, L), b) for 1 _-< r _-< (n + 2)/2 which vanish iff b I Sk,_,+~K 
extends over Sk,+~K. These generalize the classical obstruction 72(b)~ 
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Hn+~(K;TtJ_~)b.. Finally by 5.4, for maps a, b : K ~ L  and a homotopy 

H: A 1 X SksK--- L from a I SksK to b I SksK with s > O, there are obstructions 
A,(a,H,b)EE~r+I,~+~(Map°(K,L),b) for l _ - - < r < s + 2  which vanish iff 
H [(A 1 X Sks_,+tK) lifts to a homotopy H :  A ~ × Sks+~K~L from a [ Sks+lK 
to  b I Sk,+,g. These generalize the classical obstruction A2(a,H,b)E 
H s + l(K; 7ts + tL)b.. 

7.3. Convergence. Let b : K ~ L  be a fixed map. For each groupoid 
map rtfdK-" nfdK agreeing with b on vertices and for each i > - 1, suppose 

that the associated twisted cohomology H*(K; ns+iL) vanishes for all suffi- 
ciently large s. Then, by 4.5, {E].t(Map'(K, L), b)} converges completely to 
7tt_s(Map(K, L), b) for t - s  > 0 and to the kernel F~Tt0(Map(K, L), b) of 
[K, L]---[Tt0K, 7t0L] over b . :  7t0K--- 7t0L for t - s  = 0. This applies, for in- 
stance, when K is finite dimensional or L is a Postnikov space. 

Next let b : K---L be a map where L is equivalent to a simplicial compact 
Hausdortf  space whose underlying simplicial set is fibrant. Then, by 4.8, 
{E:.t(Map'(K, L), b)} converges completely to nt_~(Map(K, L), b) for t - s > 
0. This applies, for instance, when L is an Fp-completion, L ~--Fp®Y, for 

H. (Y;  Fp) of  finite type [8]. 
Finally suppose that L is Q-nilpotent with homotopy groups of  finite rank. 

Then by [15], for each b:K--'.L and i > 1, {Tti(Map(Sk, K,L),b)} is a 
continuous tower of linearly compact HQ-local groups. Thus by 4.3, 
{E],t(Map'(K, L), b)} converges completely to nt_,(Map(K, L), b) for t - s > 
0 and [K, L] ~ lims[Sk, K, L]. 

7.4. The associated homology spectral sequences. By 2.7 there is a Hurew- 
icz map from the homotopy spectral sequence of Map'(X, Y) to the corres- 
ponding homology spectral sequence over a commutat ive ring R. The latter is 
Anderson's spectral sequence ([1], [6, 4.2]) for H.(Map(X,  Y); R). 

§8. Derived functors of derivations over the Steenrod algebra 

Before discussing the unstable Adamas spectral sequence for mapping 
spaces in Section 9, we develop some algebraic preliminaries. 

8.1. Discrete coalgebras over a field k. For a set W, let kWbe the coalgebra 
consisting of  the free k-module on W with comultiplication A: kW-,.  
k W ®  kW and counit e:kW---k  determined by A(w)= w ® w and e(w)= 1 
for w E W. For a coalgebra C over k, let 7t0C be the set of all c ~ C with 
A(c) = c ® c  and e(c) -- 1. Then k( ) is left adjoint to n o ( ) ,  with adjunction 
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bijections W ~ It0kWand injections kltoC c Cby, e.g., [22, p. 57]. A coalgebra 
C is called discrete when kTtoC = C. The category of discrete coalgebras is 
deafly equivalent to the category of sets. Each coalgebra Cis the direct limit of 
its finite dimensional subcoalgebras by, e.g. [22, p. 47]. Thus a commutative 
coalgebra C over the prime field k = F~ has a natural Frobenius endomor- 
phism ~ : C ~ C dual to the pth power endomorphism. A commutative coal- 
gebra C over Fp is discrete i f  and only i f  ~ = 1 : C ~ C, since a finite dimen- 
sional commutative algebra A over Fp has ( )P = l : A ~ A if and only if there 

is an algebra isomorphism A ~ Fp X • • • X F r 

8.2. The category CA. We let CA denote the category of unstable graded 
commutative coalgebras over the mod-p Steenrod algebra for a fixed prime p, 
exactly as in [7, l l.3] except that our present objects B E C A  need not be 
connected but must have Bn = 0 for n < 0 and B0 discrete. Thus H.(Y; Fp)E 
CA for any space Y. Each object B E CA decomposes canonically as a direct 
sum B = ~b Bb of connected subobjects Bb C B for b ~ 1roB0, where Bb is the 
image of the idempotent eb : B ~ B given by the composition 

B A , B ® B  u,®1, F p ® B = B  

with ub projecting to the summand Fp --Fpb of B0 = Fp~roB0. Moreover, the 
maps in CA clearly carry components to components. The image of a map in 
CA is also in CA, and the category CA has arbitrary small colimits and limits. 
More specifically, a colimit (e.g. coproduct, coequalizer, etc.) in CA is the 
colimit of the underlying graded vector spaces with induced CA-structure; a 
finite product is the tensor product, while an infinite product may be con- 
structed using coffee resolutions (8.3); and an equalizer of maps 0, ~ : B ~ C 
in CA is the largest subobject E c B with 01E = ~ I E ,  which is given 
by the image of ~)aEa~B using all subobjects Ea C B with 01Ea-- 
q~lE~. In general, this equalizer E c B map be smaller than the graded 
vector space k e r ( 0 - ~ ) c B ;  but when O(bt)--~(b2) implies b~ =b2 for 
bl, b2~B, then E=ker (O- f ) ) ,  because k e r ( 0 - f ~ ) ® k e r ( 0 - ~ )  will equal 
ker(0 ® 0 - q ® q). Thus for a cosimplicial object I:" over CA, the equalizer of  
d o, d ! : yo _~ yl in CA is 7t°Y -- ker(d ° - d l ) .  

8.3. Derived functors on CA. Let Vect be the category of graded F:vector  
spaces W with Wn = 0 for n < 0. Extending [7, 11.4], the forgetful functor 
J :  CA--  Vect has a right adjoint G :Vect ~ CA with 
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G ( W ) =  H , ( ~ _ o K ( W , ,  n); Fp ) • 

An object B E CA is called cofree if  each connected component Bb C B is 

isomorphic to some value of G. Equivalently, an object B E CA is cofree if and 

only if B is a retract of  some G(W). A cosimplicial co free resolution of  B ~ CA 

consists of  an augmented cosimplicial object B ~ Y" with ys cofree for s >_- 0, 
with B ~ lt°Y " iso, and with nsY " = 0 for s >_- 1. One such resolution B ~ G°B 
with (G'B) s =  G'+IB is obtained by iterating the adjunction triple G - -  

G J : C A  ~ CA. Now as in [5, App.], each function T: CA ~ M to an abelian 

category M has right derived functors R~T: CA ~ M for s >_- 0 given by 

(R~T)(B) = n'T(G°B) ~. z:T(Y')  for B ~ C A  

and for any cosimplicial cofree resolution B---Y'.  More generally, on the 

category C A \ B  of objects under some B ~CA, a functor T: CAkB----M has 

right derived functors R~T: CA \ B ~ M for s > 0 defined as above by viewing 

B --- G°B and B ---- Y" as cosimplicial objects over CA \ B. This is justified by [5, 

App.] using the adjoint functors J :  C A \ B ~  Vect \ J B  : G. 

REMARK 8.4. For a more detailed study of  such derived functors, one may 

use Quillen's machinery [20], [21 ]. By the dual of  Theorem 4(*) in [20, II §4], 

there is a closed model category structure on the category VCA of cosimplicial 

objects over CA, where a map O: Y'---Z ° is: a weak equivalence when 

0 : n 'Y"  ~ n'Z°; a cofibration when Nf: N Y  ~ --- NZ" is monic for s > 0; and a 
fibration when f has the right lifting property for all weak equivalence- 
cofibrations. Now the above derived functors R 'T  are constructed using a weak 

equivalence-cofibration B ---- Y" with I/" fibrant. 

8.5. Derivations in CA. As in [19, Corr.], let V denote the category of  right 
modules M over the mod-p Steenrod algebra with Mn = 0 for n < 0 and with 

the modified unstable condition xP t =  0 for Ix[ < 2pt when p odd and 

xSq t --- 0 for Ix I < 2t when p = 2. For B ECA, let VB denote the category of 
B-comodules M ~ V with A M "  M ~ B @ M respecting the right Steenrod ac- 

tion. Note that VB is an abelian category with enough injectives of  the form 

B @ FW for W E Vect where F :  Vect ~ V is right adjoint to the forgetful 

functor. A derivation from M ~ VB to B E CA is a Steenrod module homomor- 

phism D : M ~ B such that AD : M ~ B ® B equals (1 ® D + T(D ® 1))A M . Let 

DercA(M,B) denote the Fp-module of such derivations. Each M E V B  
determines an object l (M)=  B (~M in CA under B with comultiplication 
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acting on M by AM + rAM: M--., .(B@M)~)(M@B), and this produces a 
functor t: VB---, CA\B.  For a map ¢ : B - - - C  in CA and M E V B ,  there is a 

natural isomorphism 
Homca\B(tM, C)-~ DercA(M, C) 

where M is given the C-comodule structure induced by ~. 

8.6. Another approach to derivations in CA. For B E CA, VB is in fact 
equivalent to the category of abelian cogroup objects in CA \ B, and there is an 
abelianization functor AbB : CA \ B - - V B  right adjoint to l: VB---CA\ B as 
explained below. Thus there is a natural isomorphism 

Homvs(M, AbB C) ~ DercA (M, C) 

for f :  B --  C in CA and M E VB. The functor AbB : CA \ B --- VB carries 
f :  B -~ C to the object Abs C in VB given by the kernel of the map 

B @A - (B @ f @  C)(A@ C) - (B ~ z)(B @ f @  C)(A@ C) 

from B @ Cto B @ C @ Cin the category UB of unstable B-comodules over the 
Steenrod algebra. This follows since the composition 

AbB(C) c B @ C  ~-~E,c Fv@C = C 

is the universal example of a derivation to C ~ C A  from a VB object with 
VC-structure induced by 0 : B --- C. As a B-comodule, AbBC is independent of 

Steenrod actions. Moreover, 

AbBC ~ BElcAbcC 

where O c is the cotensor product, and Abc C is a coalgebraic analogue of 
the "Kahler module of differentials." Finally, AbB C is easily determined in 
special cases: (i) if B = Fp, then Abs C E V  consists of the primitives in 
the component of C at B; and (ii) if C = G(W) for some WEVect, then 

AbsC ,~ B ~ P W i n  VB. 

8.7. Derived functors of derivations in CA. For a map ~ : B - - C  in CA, 

s >_- 0, and t >_- 1, we form the F~module 

Der~(B ,  C)~ = rt s DercA(H.S t ®B,  G'C)~, 

= ~z ~ HomcA\s(H,S t ~ B ,  G'C)~ 

where H ,  and H ,  denote Fchomology and where the optional subscript 
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indicates the dependence of  structures on O:B ~ C. By 8.3, we can use an 
arbitrary cosimplicial cofree resolution C--- 11" in place of  C--" G°C. Since 
C---- y0 is the equalizer of  d °, d I : IiO __, y~ in CA, we have 

Der°d~(B, C)~ = DercA(H,S t @B, C)~ 

= HOmcA\B(H,S t @ B, C)¢, 

for t >__ 1. 

8.8. A spectral sequence for Deffd~(B, C)~. For any factorization of  
: B --* C by maps B ---- K and K --* C in CA, there is a convergent cohomologi- 

cal spectral sequence 

E~ 'q = Ext~,K(B.S t @ B, RqAbgC) =~, Der~c~q,t(B, C)¢, 

for t ~ 1, constructed using the isomorphism 

DercA(H.S t @ B, G'C)~ ,~ Homvx(H,S t @ B, AblcG'C). 

The K-comodule RqAbg Cis independent  of  Steenrod actions, and the results of 
[3] and [21] can be applied. When ~ : B ~ C is trivial and K = Fp, RqAbKC 
becomes a derived functor of  primitives, and we recover the spectral sequence 
of  Miller [19, 2.5]. 

8.9. On Der~(B, C)~ for a Hopf algebra C. Suppose that C is a group 
object in CA; that is, C ~ CA is equipped with a multiplication map C @ C --- 
C, a unit map Fp --- C, and an antipode map C--- C in CA satisfying the group 
conditions. For example, C might be H .  G for a topological group G or U(M) 
for an unstable right-module M over the Steenrod algebra. Then for any object 
B and maps 0, ~ : B --- C in CA, there is a canonical isomorphism 

Der ~ (B, C)e ~ Der ~t (B, C)~ 

for s > 0 and t > 1; and thus a given ¢~ : B - -  C may be replaced by a trivial 
map. This follows using the cosimplicial pairing G'C ® G'C -~ G'C induced 
by the multiplication map C ~ C ~ C and by the natural pairing 

GD@GE-- 'G(D@E) for D, E ~ C A .  

Finally, in the Massey-Peterson case of a map ~ : B - - U M  in CA for an 
unstable right-module M over the Steenrod algebra, we have 

Der~t(B,  UM)¢, ,~ Ext~(/-],S t @ B, M) 
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as in [7, 13.4] for s > 0 and t > 1, where U is the category of unstable 
right-modules over the Steenrod algebra. 

We refer the reader to [16, §6] for another approach to Der~(B,  C) in an 
important special case. Finally we briefly discuss 

8.10. Homological Lannes functors and their derived fanctors. For B ~ CA 
the functor ( - ) ® B :  CA--  CA has a right adjoint MaPcA(B, - ) : C A E C A  
constructed as follows: for W~Vect,  

MapcA(B, GW) -- G MaPvm(B, W) 

where Mapv~(B, I4:) is {Homvm(Z;B, W)}~>_0; and for any CECA, 
MapcA(B, C) is the equalizer in CA of 

d °, d ~ : MaPc^(B, GC)~ MaPcA(B, GGC). 

The resulting Lannesfunctor MapcA(B, C), whose cohomological version is in 
[16], turns CA into a cartesian closed category [17, p. 95]. There are right 
derived functors 

Map~(B, C) = lr' MapcA(B, G'C)t 

for s >_- 0 with Map~(B, C) = MapcA(B, C). Moreover, for a map ~ : B --- Cin 
CA, s > 0, and t > l, there is a natural homomorphism 

h : Der~(B,  C),--- MalY~(B, C) 

induced by the cosimplicial homomorphism 

HomcA\~ (H, S t ® B, G'C), ~, HomcA\F ,(H, S t, MaPcA (B, G'C)~,) 

C MaPc^(B, G'C), 

§9. An unstable Adams spectral sequence 

We now explain how the author and Kan's unstable Adams spectral 
sequence ([7] and [8]) applies to unpointed mapping spaces, and we briefly 
discuss the associated homology spectral sequence. This account can easily be 
adapted to the pointed case. As in Section 8, we let CA be the category of 
unstable graded commutative coalgebras over the mod-p Steenrod algebra for 
a fixed prime p, and let H . L  = H.(L;  Fp). 

A mod-p GEM space is a space whose components are weakly equivalent to 
products II7_ ~ K(Wn, n) for Fo-modules W,. 
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LEMMA 9.1. There are natural isomorphisms [K, L] ~ Homc^(H.K, H.L)  
and 

nt(Map(K, L ), f) ~ HomcA\n.x(H.S t ® H.K,  H .L  )¢. 

,~. DercA(/t.S' @ H.K, H . L  ):, 

for any space K, fibrant mod-p GEM space L, map f:  K ~ L, and t > 1. 

PROOF. Using components, we may assume that K and L are connected. 
Then the first result is well-known and the second follows since 
rq(Map(K,L),f) acts trivially on n0Fib:, where Fib/ is the fiber of 
Map(S t × K, L ) ~  Map(K, L) over f, because L is equivalent to a simplicial 
F:module and K is a retract of S' × K. 

9.2. The cosimplicial setup. For a space L, let L ~ ~C~pL be the cosimplicial 
Fp-resolution given by [8, p. 20]. Then H,L  ~ H,  PpL is a cosimplicial cofree 
resolution (8.3) of H,L  in CA. Moreover, the cosimplicial space PpL is 
grouplike [8, p. 276], and thus fibrant, with total space Tot ~ppL -~ Fp®L giving 
the Ffcompletion of L, and with tower {TotsF-~pL}ffi{Fp~L} as in 
[8, pp. 20-21 ]. Next for a space K, there is an augmented fibrant cosimplicial 
space Map(K, L) -* Map(K, Ppp L) with total space 

Tot Map(K, ~pL) -- Map(K, Fp~L) 
and with tower 

{Tots Map(K, PpL)} = {Map(K, FpsL)}. 

The connected components (4.4) of Map(K, e L )  correspond to members of 

7t°tt0 Map(K, ~pL) ~ 7t ° HOmcA(H,K, H,  PpL) ~ HomcA(H,K, H,L)  

and, for each map~:  H , K ~ H , L  in CA, the connected component 
Map(K, PpL)¢ is fibrant with 

7t% Map(K, PppL), ~ Der~(H,K,  H,L) ,  

for s > 0 and t > 1 by 9.1 and 8.7. 

9.3. The unstable Adams spectral sequence and obstructions. Each 
map b : K~FpmL with 1 < m < oo determines a map b, :  H,K ~ H , L  in CA 
corresponding to [b]~Tt°tt0Map(K, PpL) which is given explicitly by the 
composite of the natural homomorphisms 

b, H,(proj) H,(incl) 
H,K . H.FpmL ' H,Fpo ~ H,(F, @ L ) ' H,L. 
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When L is Fp-good [8, p. 24], H,L = H,Fp=L and a map b:K~Fp®L 
immediately determines this b,  : H,K ~ H,L. In general, for a map b : K 

Fp®L we obtain our unstable Adams spectral sequence 

{EU(K, L, b)} = {E].t(Map(K, f-~pL ), b)} 

from 2.5 with 

E~,'(K, L, b) = D e r ~ ( H , K ,  H,L)b, for s >_- 0, t > 1 

= HomcA(H,K, H,L) for s = 0, t = 0 

by 8.7 and 9.1. More generally, for a map b:K-"FpmL liftable to (Fp)2m+lL 
with m > 0, we obtain a truncated version of  this spectral sequence defined for 

1 =< r < m + 2. For a given map ~ : H,K--,. H,L in CA, there always exists a 
mapb:K--,'Fp~L with b , = ~  by 5.1, and to realize ~ we seek a lifting 

b : K--*FpooL. By 5.2, for any map b : K.--,.Fp,,L with n > 1, there are obstruc- 

tions 3,,(b)~E"~+~,"(K, L, b) for 1 ~ r < (n + 3)/2 which vanish iffthe projec- 

tion of b to (Fp),_r+ ~L lifts to (Fp), + ~L. In particular, there is an obstruction 

3'2(b) ~ De~c/~ I'"(H,K, H,L)b,. Finally by 5.4, for maps a, b" K--* Fp~L and a 
homotopy H:  A I × K --, FpsL from as to bs with s > 0, there are obstructions 

Ar(a,H,b)EE~+~,s+t(K,L,b) f o r l < r < s + 2  

which vanish iff the projection of  h to (Fp)s_~+lL lifts to a homotopy from 
as+~ to bs+~. In particular, there is an obstruction A2(a,H,b)E 
D,.S+ 1.~+ i(H,K ' H,L )b,. ~ L  C A  

9.4. Convergence. For a map b : K-,. F~®L we have obtained an unstable 

Adams spectral sequence {EU(K, L, b)} abutting to 7tt_s(Map(K, Fp~L), b). If  
H . L  is of  fni te  type, then this spectral sequence converges completely to 

s , t  n,_s(Map(K, Fp~L),b ) for each t - s > O ,  and thus Eo~+(K,L,b)= 
S t  ~ E~ (K, L, b) for each t > s > 0 and 

n~(Map(K, Fp®L ), b) ~. lim 7~t(Map(K, FpsL ), b ). 
S 

for each i > 0 .  This follows by 4.5 since {FpsL}, and consequently 
{Map(K, Fp, L)}, is weakly equivalent to a continuous tower of simplicial 

compact Hausdorff spaces which are fibrant as simplicial sets, because the 

spaces FpsL have finite homotopy. 

To construct the corresponding homology spectral sequence, using the 

homological Lannes functors (8.10), we need 
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LEMMA 9.5. There is a natural isomorphism 

H,  Map(K, L) .~ MapcA(H,K, H,L)  

in CA for any space K and fibrant mod-p GEM space L. 

PROOF. By 9.1 the natural map from the cofree object H ,  Map(K, L) to the 
coffee object MapcA(H,K, H,L)  in CA induces a bijection 

noH, Map(K, L) ~ n0 MapcA(H,K, H,L)  ~ HOmcA(H,K, H,L)  

with n0 as in 8.1 and an isomorphism 

Hornc^xF,(H,S t, H ,  Map(K, L))¢ ..m HOrnCAXF, (H,S t, MaPcA (H,K, H ,L  ))¢ 

for each (~:H,K-- .H,L in CA and t > 1. Thus the natural map is an 
isomorphism. 

9.6. The associated homology spectral sequence. Let 

{E~,t(K, L; Fo) } = {E]'t(Map(K, /~pL ); Fp)} 

be the homology spectral sequence of [6] abutting to H,(Map(K, L); Fp) and 
having 

E~.t(K, L; Fo) ~ MalYd~(H,K, H , L  ) 

by 8.10 and 9.5. For a map b: K--'Fpo~L there is a Hurewicz map of spectral 
sequences 

h : {E]"(K, L, b)} ~ {E],'(K, L; Fp)} 

by 2.7, abutting to 

h: nt_s(Map(K, L), b)---Ht_s(Map(K, L); Fp) 

and given by the homomorphism (8.10) 

h : Der ~ (H ,K ,  H,L)b,  ~ Map~(H,K, H,L)  

when r = 2, s > 0, and t > 1. We show convergence in the standard case. 

PROVOSmON 9.7. I lL  is an n-connected fibrant space with n > 1 and K is a 
space of  dimension <-_ n, then {EI.t(K, L; Fo) } converges strongly to 
H ,  Map(K, L) ~ H,  Map(K, Fv®L ). 

PRoov. The natural map 

: {Hi Map(K, F~L)} ~ {HiT,(F o ®Map(K,/~pL))} 
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is a pro-isomorphism by [6, 3.2] since ;t'rt t Map(K, PvL) = 0 for t -< s as in 
[8, p. 31], or alternatively by [6, 3.4] since MalY~(H,K, H.L)  -- 0 for t < s. 
Thus by [6, 2.3] it will suffice to show that 

{H~ Map(K, L)} ~ {Hi Map(K, Fp~L)} ..-* {Hi Map(K, F~L)} 

are pro-isomorphisms for each i. When Kis a point, this follows by [8, pp. 88, 
186]. When Kis a (possibly infinite) discrete space, it follows as in [6, 9.3] using 
the n-connectedness of the spaces F~,L for 0 <_- s _-< oo and using the elementary 
criteria: (i) for a tower {As-*Bs ~ C,} of fibcrings with each Bs and Cs 
1-connected, {HiBs}--" {HiCs} is a pro-isomorphism for all i iff {/tiAs} is 
pro-trivial for all i; and (ii) for a tower {As} of simple spaces, {H~As} is 
pro-trivial for all i iff {ZIp ® ;t~As } and {Tor(Z/p, rtiAs)} are pro-trivial for all 
i. When Kis a disjoint union LIa A m of copies ofA m for m > 0, it follows from 
the preceding case. In general, it follows by induction on the dimension of K 
using Eflenberg-Moore spectral sequences for fibre squares of mapping spaces 
out of 

II )L" ' Sk , , , _ lK  

II Am , SkmK 
a 

By Proposition 9.8 below, for r > 2 and arbitrary spaces K and L, 
{E;'t(K, L; Fp)} is the direct sum of the Ffhomology spectral sequences of the 
cosimplicial components Map(K, ,Z~pL )~ c Map(K, ~ L  ) for ~E 
HDmcA(H,K,H.L), and the convergence results of [6] may be applied 
componentwise. 

PROPOSITION 9.8. For a cosimplicial space X" and abelian group A, the 
inclusions of cosimplicial components X~ c X" for a E 7t°Tto X" induce an iso- 
morphism 

{ (~o E~"(X~; A)} ~ {E~,t(X'; A)} 
for t  >2.  

This follows from Lemma 9.9 below using J TM ffi ~0X'. A coeffrient system M 
on a cosimplicial set J* consists of a functor  M to abelian groups from the 
category whose objects are the simplices of J" and whose morphisms a : x ~ y  
are the cosimplicial operators a with ax - y .  The homomorphism M(a) is 
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written as a : Mx ~ M  r We let H*(J'; M) = n*C(J°; M) where C(J°; M)  is the 
cosimplicial abelian group formed by summing the coefficient groups in each 
dimension. Using the restriction of M to the constant cosimplicial set ~ on 
{rE J° I d°v = dlv}, we have 

LEMMA 9.9. The inclusion ~ C J" induces an isomorphism H*(~;  M)  ,~, 

H*(J ' ;  M) for any coefficient system M on a cosimplicial set J*. 

PROOF. It suffices to show H*(J ' ;  )1/) ffi 0 where )l,]r is the coefficient system 
with )fix = 0 for x ~ and k]r~ ---M~ otherwise. For a simplex x E J" and 
abelian group A, let L(A,  x) denote the coefficient system on J" given by 
L (A , x )y = ~ t  d tA where d I ranges over the cofacial operators with dlx ffi y and 

where dtA f l A .  Then H * ( J ' ; L ( A , X ) ) = O  since the normalization of 
C(J'; L(A,  x)) is zero except for J : A ~ JA in dimension Ix I and Ix I + 1. For 
any coefficient system P on J ' ,  let 

NP~ = I~ ker(si: Px "-* Ps'x). 
i 

Then a homomorphism P ~ P' is monic iff NP,, ---, NP~ is monic for all x E J'.  
There is a natural homomorphism 

i~) L ( N2flx , x )~) f - I  
x~-.~ 

which is monic by the above criterion since N~]rx--0 for x ~  and 
NL(NKIx, x)y ffi 0 for y ÷ x with x $ ~ .  The cokernel k/ '  of this monomor- 
phism has H*(J; ~r) ~ H*(J;  kT/'), and the lowest nonvanishing group (if any) 
in k/ '  is higher than in )l~r. Thus, by iteration, H*(J;  M) = 0. 

§10. The Et-level constructions 

We devote the rest of this paper to constructions needed for the results in 
Sections 2-5, and we start by establishing Et-level properties of the tower 
{Tot,. X'} for a fibrant cosimplicial space X'. Our results here extend those of 
[8; Ch. X]. 

10.1. A natural fiber square. Let M m- IX" be the matching space given by 
all 

(x °, . . . .  x m - t ) ~ X  " - '  × . . .  × X " - '  

with six j = s J - l x  ~ for 0___ < i < j  =<-m- 1; let a , , : X m ~ M " - ~ X "  be the fib- 
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ration with am(X) = (s°x . . . .  , s m - l x ) ;  and let/Zm" ~m C Am. Then there is a 

natural fiber square 

TOtm X" , Map(A m , X m) 

Tot _~X" P" , Map(/~m, am) 

with the canonical maps. Note that Zm depends only on the codegeneracies 

of  X'. Clearly, Map(A m, X m) contains X m as a strong deformation retract 

via the standard homotopy from the constant map (d])m(s°)m:Am-~A m to 

1 : A m ~ A  m. For i , m  > 0  and a vertex bETotm X', there are associated 

isomorphisms 

/ti Fibre (X', b) ~ 7ti Fib(zm/b m) "~ lti Fib(zm/(dl)mbo) 

where Fibm(X', b) denotes the fiber ofTotm X'--" TOtm _ ~ X" at b and Fib(zm/X) 
denotes the fiber of  Zm at a vertex x. For any vertex vE X m c Map(A m , X m), e.g. 

v = (dl)mbo, there is a canonical isomorphism 

Fib(zm/V) ~-, Map.  (S m, Fib(am~V)) 

where Fib(am~V) is the fibre of am : X m - - ' g i n - i X  at v, and this induces an 

isomorphism rt~ Fib(zm/V)~ rt~ +m Fib(am~V) using the standard orientation of 
S ~ ̂  S m. By [6, §5] there is a canonical isomorphism 

~t~+m Fib(am~V) ~ NHi+m(X m, 13) when m = 0 or v ~ X  m, 

where X~ is the union of  the connected components of  X" (see 4.4). The above 

isomorphisms compose to give the following ~.  

PROPOSXTXON 10.2. For i , m  >=0 and a vertex bETotmX' ,  there is a 

natural isomorphism 

: ~i Fibre( X', b) ~ NTti+m(X m , b) 

o f  groups when i ~ 1 and o f  pointed sets when i = O. 

In the fiber square 10.1, we next determine ~z.(Map(gm, am), v) for m > 1 

and v E X  m. The map Zm induces 

"[m, : 7~i( Xm , V ) ~  lti(Map(#m, O'm) , V) 

and, for the pointed space (z~ m, 0), the inclusion 
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Om: Map.(~ m, Fib(am, O) C Map(#m, am) 
induces 

N•m+i-l( Xm, O '~' 7[m+i-I Fib(am/O 
o., 

n~ Map.(2[ m, Fib(am~O) , ~zi(Map(]tm, am),/3) 

using the standard orientation of S ~ ̂  2[ m. The right action of n~(X m, O on 
Sl[,(  Xm, O C 7c,(X m, O gives a semidirect product n~(X m, O ×~ NT[m( Xm, O, 

which is defined as the set 7tj(X m, OXNTCm(X m, O with multiplication 
(g,a).(h, b)=(gh, ah + b ). 

PROPOSITION 10.3. For m > 1 and v~ Xc m, there are natural isomorphisms 

"~m,0m, : /[1( Xm, O XcSTCm( Xm, O "~ nl(Map(#m, am), O, 

Tm,+ Om,: 7Ci (X m , O ~ N}Zm + i - 1( Xm , O '~ 7[i (Map( #m, am ), O, 

for i > 2. The composite of these isomorphisms with 

(9,: 7[i(Map(/Zm, am), O "" ~zi- 1 Fib(Tm/O ~ N~zi +m- 1( Xm , O 

carries each element (a, b) to (1)"-~b for i > 1. 

PROOF. The results on rti(Map(#m, am), 0 follow since "c m restricts to a 
cross-section of the fibration em:Map(/zm, am)"*X m with em(f)=f(O) for 
0EZ~ m and since Om makes Map,(z~ m, Fib(am~O) a homotopy fiber of e,m. The 
result on 0, follows using the map of fiber sequences 

Map, (S m, Fib(am/O) --" Map, (A m, Fib(am/O) --" Map, (2[ m, Fib(am/O) 

Map,(S m, Fib(am/O) --" Map(A m, X m) '" Map(#m, am). 

Using the operator J of 2.2, we have 

PROPOSITION 10.4. For i, m > 1 and a vertex b ~To tm X TM, the fibration 
composite 

8 
~ Fibm-I(X', b ) ~  ni(TOtm_ l X', b) " ) rti-l Fibre( X', b) 

corresponds to ( - l ) i - ~ :  NT[i+m_l(X m-l, b)--* N}Zi+m_l(X m, b). 

PROOF. Taking a fibration mapping cone ofb: SkmT~-") X', we may assume by 



88 A. IC BOUSFIELD Isr. J. Math. 

naturality that X" is pointed and that b E TOtm X" is at the basepoint. The result 
now follows using 10.3 since the composite of canonical maps 

Fibre- 1X'--* TOtm_ ~ X'---- Map(/Zm, a,,)-" Map(2[ m, X m) 

equals the composite 

Map, (S m- 1 Fib(am))--" Map, ( S  m - i V " " " V S m - 1, X m )  _.~ Map(~k", X m) 

of maps induces by di: Fib(am_0 --) Arm for 0 ~ i < m and by the skeletal 
quotient map 2[ m --- S m- ~ v . . .  v S ' # -  i .  

By the naturality of (I) in b, the fibration right action of 7tl(TOtm X', b) on 
ni Fibm(X', b ) ~  Nrt~+m(X m, b) agrees with the fundamental action (3.2). For 
i ffi 0 we have more generally 

PROPOSITION 10.5. For a vertex bETotm X" with m > 1, the ilbration 
boundary 

¢)0.: nl(TOtm_ ~X', b ) - 'no  Fibre (X), b)~. Nnm(X ~, b) 

is a crossed-homomorphism with respect to the fundamental action of 
lq(Totm_, X', b) on N~tr,(X m, b), and the associated crossed-homomorphism 
action (2.2) agrees with the fibration action. 

PROPOSITION 10.5. For a vertex bETotmX" with m >-1, the fibration 
boundary 

(I)0.: nl(Totm_, X*, b)--) re0 Fibm(X *, b) mNrtm(X m, b) 

is a crossed-homomorphism with respect to the fundamental action of 
7tl(TOtm_ l X ~, b) on NTtm(X m, b), and the associated crossed-homomorphism 
action (2.2) agrees with the fibration action. 

PROOF. By 10.1-10.3, O0, is the composite of the homomorphism 

tim.: x~(TOtm _ 1 X', b) ~ nl(X ~, b) X, N~t,. (X", b) 

with the projection function to N~m(X m, b), and thus O0, is a crossed- 
homomorphism. The fibration action of n l(Totm _ 1 X', b ) is determined via the 
fibration Zm. 

For m > 1 consider the commutative triangle 



Vol. 66, 1 9 8 9  HOMOTOPY SPECTRAL SEQUENCES 89 

~0 TOtm-i X" ' ~0 Map(/Zm, Om) 

free X m NT~m - I 

using ~,, from 10.1 and the canonical maps to N[~ m, xm]frce which is here 

identified with NTcfmr~_lX m via the reverse orientation (5.1) of~ m. The proof of 

10.3 shows 

PROPOSITION 10.6. I f  X~ = X" and m > 1, then there is a natural bijection 

am : 7[ 0 Map(/Zm, O.m) '~ ' /v ie 'm-  1 " ~  ~r--frc¢ X m. 

Our next result leads to the obstruction cocycle of 5.1. 

PROPOSITION 10.7. For m > 1, a vertex a~Totm_~ X" lifts to Totm X~ i f  
and only if  a m"/~m ~ X m is nullhomotopic. 

PROOF. Using 4.4 we may assume that X~c -- X'. Then 10.1 and 10.6 show 
that [a  ] E ~r0 TOtm _ ~ X* lifts to 7r0 Totm X* iff the element ~ [a ] --- [a m ] is trivial 
• free X m. In NTc m_ 1 

Finally we consider 

10.8. Hurewicz maps. The R-homology spectral sequence of X" is con- 
structed in [6] by using the total chain complex T(R ® X') with 

T(R ®X')n = H NmNm+n( R ~X~), 
m>O 

Or = 0 + ( -  1)~+tJ: T(R ® X ' ) ~  T(R ®X'),_~, 

where N*N.(R ®X')  is the normalized double complex with 0 = E l ( -  1)Jdi 
and J = Ei( - 1)id ~. This is filtered by the subcomplexes FmT(R ®X')  with 

FmT( R ~ X*)n = H NkNk +n( R ~ X') 
k~m 

and there is an associated tower of complexes 

Tm(R ~ X  TM) ---- T(R ~X~)/Fm+~T(R ~ X  ~) 

producing the homology spectral sequence with E~-terms 

H~(F"T(R ~ X')/Fm + ~ T(R ~ X')) ,~ NH~ +m(Xm; R ). 

The natural chain map 
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N . ( R  ~TOtm X') C N.(TOtm(R @X')) ~ , Tm(R ~ X ' )  

of [6, 2.2] induces a map 

¢ .  : H.(Wotm X'; R ) ~ H . T m ( R  @X'). 

Using the map h of  2.7 we obtain a commutat ive ladder of exact sequences 

. . . .  hi+ t(TOtm-l X', b ) ~ N n i + m ( X  m , b)--. n,(Totm X', b) . . . .  

. . . .  Hi + ,Tm_I(R ~ X')--. NHi +m(Xm; R ) ~  HiTm(R ~ X') . . . .  

terminating with ~zo(Totm-1 X °, b) and HoTm-i(R @X'). For vertices a, b E  
T o t / X "  with am _ ~ = bm- 1E Totm_ 1 X', the obstruction cocycle and difference 
cochain of 5.1 and 5.3 satisfy 

hc(b ) = dr.[~b] ~ NHm(X m + I; R ), 

hD(a, b) = [fba - qbb ] ENHm(XI;  R ). 

Moreover, the diagram 

/~o TOtm- l X" e free ' Nltm- 1 xm 

lO.e 
norm_,(R ®X.)  , R) 

commutes  where, for any space Y, e" lt0Y--" Ho(Y; R) is defined by e[y] = [y]. 

§11. Construction of homotopy differentials: Part I 

For a fibrant cosimplicial space X', we shall construct relations (see 2.3) 

dr: Nrtq(X s , b ) - -Nnq+,_ , (X  s+r, b), 

called differentials, which will induce the required spectral sequence differen- 
rials. We assume q >_- m here and postpone the case q < m to Section 12. Using 
the isomorphism + of  10.2 and the obstruction c( ) and D( , ) of  5.1 and 

5.3, we first specify: 

11.1. Ordinary differentials. For r > l ,  q > m > O ,  and a vertex b E  
Tot,. +r X', the ordinary differential 
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dr : NTtq(X m, b) ~ NTtq+r_ I(X m +r b) 

is defined as the composite relation of  

Nxq(X m, b) ~. ~q-m Fibm(x., b) ~ ltq_m(TOt m X °, b). 

' lZq_m(TOtm+r_ 1 X ~, b ) ~  ltq_m_1 Fibre +r(X w, b) ,~ Nq+r_l(X m+r, b), 

For r, m > 1 and a vertex b ETOtm+r-t X ~, the ordinary differential 

dr: Nrtm(X m, b ) ~  NTtm+r-i(X re+r, b) 

is defined by letting dr(0) = ¢ iffthere exists a vertex a ~ TOtm +r- t X~ such that 

a,~-i = bin-m, D(am, bin) = 0, and c(a) - c(b) = #. When X. is pointed and b is 
at the basepoint, the ordinary differentials will be called pointed differentials. 

LEMMA 11.2. Suppose that the ordinary differential dr is defined on 
Nnq(X m, q), and let f :  X.  ~ Y" be a map to a fibrant cosimplicial space ]I" such 
that f . :N~tj(X k, b)~. Nxj(Y k, f b )  for m < k < m + r, q < j  < q + r -  1, and 
j - k > - 1. Then the ordinary differentials 

dr: Nx¢(X m, b)--'Nrc¢+,_l(X re+r, b), 

dr: NTtq(Y m, fb)~N~zq+r_t(Y m+', f b )  

correspond under f . .  

PROOF. For the case q-~ m > 1, let FiX" be the fibre of  Totk X"-" 

Tot=_l X" over bETotm_l  X'. Then by induction on k, f . :  nt(Fkx., b ) m  
nt(FkY', fv) for each vertex VEFkx. ,  m _--< k < m + r - 1 and 0 < t _-< m + 
r - 1 - k .  The result follows since d, is the composite of  

Nxm(Xm, b) ¢~ no(Fmx.,b)~rto(Fm+r-tX,,b) ~ , Nnm+r_t(xm+',b) 

with 7[a] = c(a) - c(b). The result for q > m > 0 follows similarly. 

11.3. General differentials. These are relations dr:Nrtq(X~,b) ~ 
Nrtq+,_l(xm+',b) which will be defined for r ,q > 1 and q > m >0,  where 

b E Tot, X. is a vertex such that the Whitehead products between x¢(X ~ +r, b) 

and the image of  b.:nr(Sk,A=+r,o)~rCr(Xm+r,b) are trivial in 

x,+,_t(X =+', b). This condition holds automatically when b lifts to Tot,+t X. 

or when X =+' has trivial Whitehead products or when m - 0. First take the 

pull-back 
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Sk, A" b , Pq-lX" 

ofcosimplicial spaces where Pq _ ~X" the (q - 1)st Postinikov section [ 18, p. 32] 

of X', and regard the obvious cross-section b : Sk, A" ~ A "~ as an inclusion. Then 
the cosimplicial maps u : . ~  ~ X" and j :  ~ - - -  (X/Sic, A)" induce isomorphisms 

n,(x k, b) #,(X k , b) n,(X/Sk, 

for q _-< t _-< q + r - 1 and k _-< m + r, where ~t(X k, b) denotes the kernel of 
v,: ~t(X k, b) ~ ~I(Sk, A k, 0). Using the associated isomorphisms N~t(X k, b) 
N~t(f(/Sk, A) k for q _-< t ffi< q -t- r - 1 and k _-< m -F r, we let the general 
differential 

d,: Nr~q(X', b )---,Nn¢+,_~(X m+', b) 

correspond to the pointed differential 

dr: Nnq(X/Sk, A)" ~ Nnq +,_ I(XISk, A)" +' 

given by 11.1 after making (XISk, A) ° fibrant. 

11.4. Improved general differentials. These are relations 

d,: Nnq( X m, b) ~ Nnq +,_ l( X m +', b) 

which will be defined for r,q > 1 and q>-_m ~ 0  where beTot,_~ X" is a 
vertex liftable to Tot, X" and such that 

[7[,(X m+', b), nq(X m+', b)] ffi 0 in n,+q_,(X m+', b). 

These d, are given by the corresponding general differentials of 11.3 using an 
arbitrary lifting of b to Tot, X'. Two liftings b', b"ETot ,  X" give the same 
relation by a straightforward argument using the map 

b ' I Ib"  :Sk, A ° II Sk, A°--,Pq_~X" 
S k ,  _ l A  ° 

in place of b: Sk, A'-,Pq_IX" in 11.3. 
An ordinary d,: Nnq( X m , b ) ~  Nnq + ,_ ~( X" + ", b ) may be compared with the 

associated general d, on Nrtq(X ~, b) when the latter is also defined, i.e. when 
( q , m ) ~ ( 1 ,  1) or when (q, m) ffi (1, 1) with nl(X'+l,b) acting trivially on 
c(b)ENn,(X "+~, b) (as it automatically does when b lifts to Tot,+ j X'). 
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THEOREM 1 1.5. An ordinary differential 

dr: Nltq(X m , b ) - -  Nn~+r_l(X m+', b) 

equals the associated general differential when the latter is defined. 

PROOF. First suppose that q > m and b E TOtm +, X'. Letting ~"• be the 
pullback of b" Skm +,A • ~  P q - i X " - X "  and using the cosimplicial maps 

X" ,-- g ' •  --, (X'/Skm + ,A)" "-- (£ /Sk ,  a) • 

with objects made fibrant, Lemma 11.2 shows that the ordinary differentials dr 
agree on the successive groups 

Nrtq(X", b) .~. Nrtq( f(  'm, b) ~ Nnq(X'/Skm +rA) m "~. Nnq( f( /Sk, A) m. 

The result now follows since the ordinary dr on Nrtq(,f(/SkrA) m agrees by 
definition with the general dr or Nn,(X', b). Next suppose that q = m and 
bETotm+,_~ X'. It suffices to show that the ordinary d, on Nrtm(X~,b) 
corresponds to the pointed dr on Nnm(/('Skm+r_~A) m where X'• is now the 
pullback of 

b: Skm+r_tA•---" Pm_lX" ~ X ". 

For an ordinary drO= f~ determined by an element a~Totm+r-~ X" with 
am-t = bm-~, there is a corresponding pointed differential constructed using 
the cross-section a : Skm +,-~A •--" ~"•- The converse follows by naturality after 
first applying Lemma 11.2 to the cosimplicial map 

X (X/Skm÷r_lA) ×Skm+r-lA" 

with objects made fibrant. 

COROLLARY 1 1.6. Let a, a', b ETOtm+r_~ X" be vertices such that a '_~ = 
am-~ in Totm_~ X'. Suppose that 1 ~ r < m and ar = br, or that 1 <-_ r <-_ m and 
a , - i  = br-~ with [Tt,(X ~+r, a), rtm(X -+~, a)] -- 0. Then there exists a vertex 

b'~Totm+r-~ X" such that b~,-i = bm-~ in TOtm_~ X', D(b~,, bin) = D(a~n, am), 
and c(b') - c(b ) = c(a') - c(a). 

Since general differentials are defined in terms of pointed differentials, the 
following properties are easily verified by reducing to the pointed case. 

11.7. Formula for d~. A general d~ : NTtq(X m, b) ~ Nrq(X m + ~, b) equals the 
function ( - 1)q-m-~ of 2.2 and 10.4. 

11.8. Natm'ality properties. A general dr: NTtq(X m, b)~NTtq+r-~(X re÷r, b) 
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is natural in X" and b ~Totr  X" (or b ETOtr-1 X" in the improved case 11.4), 

i.e. for cosimplicial maps and path classes. 

11.9. Additivity properties. For additive (but possibly non-abelian) groups 

A and B, a relation f :  A - - B  is called additive if: (i) h(0) = 0; (ii) h(a) = b 
implies h( - a) = - b; and (iii) h(aO = bl and h(a2) -- b2 imply h(al + a2) = 
b~ + b2. For a group G right-acting on B, a relation k : G ~ B  is called 

crossed-additive if: (i) k(e )= 0; (ii) k(g)= b implies k(g -l)  = -bg -~ ;  and 

(iii) k(gl) = bl and k(g2) = b2 imply k(glg2) = big2 + b2. A general 
dr:Nltq(X m, b)~Nltq+r_l(X re+r, b) always gives dr(O) - - =  0 and is additive for 

q > m with (m, q) ~ (0, 1) or q = m > r (or q = m = r in the improved case 

11.4). A general dr:Nnl(X °, b )~Nl t r (X  r, b) is crossed-additive using the 
fundamental action (3.2) of  ltl(X °, b) o n  Nltr(X r, b). These results follow by 

applying 10.5 and 11.6 after reducing to the pointed case. 

11.10. Domain and indeterminacy properties. For a general 
dr: NItq(X m, b)~Nltq+r-l(X re+r, b) with r > 2, the domain of dr equals the 

kernel of  dr-~ and the indeterminacy of dr equals the image of  dr-1. For a 

general dr : Nltm( X m, b ) ~  NIt m +r-1( Xm +r, b) there are further indeterminacy 

properties in cases where dr may be non-additive. If drx = y with r > m, then 
drx = y  + z for each element z ~NTtm+r_l(X re+r, b) in the indeterminacy of  

din. If  drx = y and drx = y '  with r = m, then the element y - y '  lies in the 
indeterminacy of dr. Furthermore, in the improved case (i.e. when 
[7[r(X m+r, b), 7[m(X m+r, b) ]  = 0) ,  if  drx -- y with r > m + 1, then drx = y + Z 
for each element z ~ NIt m + r-l(  Xm + r, b) in the indeterminacy of dm +~. Finally, 
in the improved case, ifdrx = y and drx = y '  with r = m + 1, then the element 

y '  - y lies in the indeterminacy of  dr. These results follow by reducing to the 

pointed case and using 11.6 when needed. 

11.11. Composition properties. For q, r, s > 1 and q > m > 0, let b 

Tot,+,_~X" be a vertex with trivial Whitehead products between 
rtq(X m +r+s, b) and the image of 

b,: ~r+s_l(Skr+s_l Am+r+s, O) ----~ 7~r+s_l(X m+r+s, b). 

This condition on b~Totr+s_l Xe holds automatically when b lifts to 

Tot, +, X" or when X m +" +s has trivial Whitehead products. The general differ- 

entials 

Nnq(Xm, b ) a, , Nnq+,_~(xm+r,b ) d,, Nrcq+,+s_2(xm+r+s,b) 
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are now defined and have range d, c kerds. Moreover, if d r ( w ) = x  and 
ds(y) ffi z, then ds(y + x) = z when (m, q) ~ (0, 1) and d,(yw + x) = zw when 
(m, q) = (0, 1) with yw given by the fundamental action (3.2). These results 
follow by reducing to the pointed case of(f(/Skr +s- ~A)" made fibrant, where 
is the pullback of b: Skr+s_~A'--*Pq_~X',-X" as in 11.3. 

11.12. Equivarianee properties. Suppose that the general differentials 
dr:N~tq(X m, b )~Nnq+r- l (X  m+', b) and dr:Nn~(X °, b ) ~ N n , ( . V ,  b) re- 

spectively give dr(y) = z and dr(w) -- 0. Then the former gives d,(yw) = zw 
using the fundamental action of n~(X °, b). This follows by the naturality of dr 
in b, since w must lift to n~(Tot, X', b). 

11.13. Herewiez properties. For a general differential dr: Nnq(X m, b ) ~  
Nnq + r-~( X~' +', b) and ring R with identity, there is a corresponding homology 
differential dr: NHq (X m; R ) ~ NHq +, - l(X" +'; R ) of [ 6 ] which gives dr (hx) ffi 
hy whenever d,x = y for x ~ Nnq(X "~, b ). This follows using 10.8. 

Finally, we introduce 

11.14. The bottom differential. For r > l ,  the bottom differential 
d,: noX ° ~ Nn,~_ IX' is defined as the composite of the relations 

n0X ° = no Toto X'--- no TOtr- 1 Xw e , l v t~ r - - I  "x~r~f ree  yr  

with ~ as in 10.6. Thefiee kernel o f  d, is defined as the set of all x EnoX ° such 
that d,x = 17 for some trivial p ENnf~_~X'. By 10.7, this free kernel equals the 
image of no Tot, X" --* noX °, which equals the domain of d,+ 1. For a ring R with 
identity, there is a corresponding homology differential dr:Ho(X°; R ) ~  
NH,_~(X'; R)  which gives dr(ex) = hy by 10.8 whenever the bottom differen- 
tial gives d,x ffi y for x E 7toX °. 

§12. Construction of homotopy differentials: Part II 

For a fibrant cosimplicial space X', we now construct differentials 
dr:Nnq(XS, b)-.~Nnq+r_l(xm+',b) in the case q < m .  As in [9], we use 
universal examples in the homotopy category Ho(VS,) of pointed cosimplicial 
spaces (see [8, p. 277]). 

DEFINITION 12.1. For 1 < q < m and 1 < r < q, a d~.q-model is a pointed 
cosimplicial space M" with elements i E Nnq M m and j E Nnq +,_ ~M s +' such 
that: 

(i) MS is simply connected for s >= O. 
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(ii) The integral homology spectral sequence [6] of  AP has d ' :  NH~M" 
NHq+,_tM m+" ~ Z ,  NHo M° ~ Z,  and N H t M  s ~ 0 otherwise. 

(iii) The dements  h ( i ) E N H q M  m and h(j)ENHq+,_~M m+~ are generators 
with d,h(i) = h(j). 

LEMMA 12.2. Let 34" be a din,q-model for 1 < q < m and 1 <-r <-_q. 

Then for t < 2q - 1, the group NntM s is isomorphic to ntS q when s = m,  

to ntS q+'-~ when s = m + r, and to 0 otherwise. The group 

Nn2q_ ~MS/N[r~qM s, nqMq is isomorphic to 7~2q_ ~Sq/[nqS q, 7~qS q ] when s = m,  

to n2q_tsq+'-l/[7~qS q+'-~, nqS q+'-]] when s = m + r, and to 0 otherwise. 

PROOF. By 12.1, h : rctM s - - 'HtM s is onto for t > 1 and s _-> 0, and thus 
each M s is weakly equivalent to a wedge of  q-spheres and (q + r - 1)-spheres. 
Let FTttMSC rct M s denote the subgroup of  elements in the image of  

f . :  7rt(S q v . . .  v S q ) - , n t M  ~ for some map f :  S q v . . .  v S q - - , M  s. There are 
cosimplicial isomorphisms 

FTttg*~,TftSq~HqM * for t < 2 q -  1, 

7ftJlf*/FTft2~lQ~TftSq+r-l~Hq+r_t2]/1 * fo r t  < 2 q  - 1, 

F~2q_ tAP/[rtqM*, 7cqM'] ~-. (lr2a- ,Sq /[~rqS q, rtqsq]) ® HqAP, 

rt2a_lM.iFx2q_tAp~{: 2¢ ISq+'- l®Hq+'- lM" 
f o r r >  1, 

for r ---- 1, 

and the lemma follows since normalization is exact and commutes  with 
additive functors. 

12.3. The models D m,q. F o r 0  < q < m let M•,qbe the pointed cosimpficial 
space such that (Mf',¢) s equals: • for s < m; S q for s -- m;  and the wedge Vz dZS q 

for s > m, where dis  q = S q with d ~ ranging over the cofacial operators from 
dimension m to s. Choose a weak equivalence MF,q--,D~ ,q to a fibrant- 
cofibrant pointed cosimplicial space D[ ~,q. Let i E N~q (Dr ',¢) m be represented by 
S q c (M~"q) q and let jENnq(Df',¢) "+t be j - - ( -  1)q-m+~J(i) with 6 as in 2.2. 
Then D[ ~,q is a d~,q-model when q > 1. Moreover, for each pointed eosimplicial 
space Y', there is a bijection [Df '.q, l ~] ~NTrqY" sending each f to f . ( i ) .  
Proceeding inductively, given the d,~_'$-model Dm_'~ with 2 _-< r _-< q, we then 
construct D m,q by forming the homotopy cofibering 
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D~+,_l.q+r_ 2 j , Dm:q 1 k , Dm.q 

with D m'q fibrant-cofibrant and with the m a p j  representing j E 

NTtq+,_2(Dm_'$) m+'-~. Using Mayer-Vietoris sequences for the homology 

theories N H ,  Y s and H ,  Ts(Z ~ Y')  with Ts as in 10.8, we deduce 12.1(ii) for 
D m,q. We let i = k , ( i ) ~ N T t q ( D m ' q )  m and, using the triviality of  j , ( j ) ~  

NTtq+r_E(Drm-ql) m+r~-, O, we choose jENTt~+r_l(Dm'q) m+r such that D m,¢ is a 

din.q-model. If  M" is a pointed cosimplicial space with Nrtq +.,_ l Mm + u ,~ 0 for 

1 < u < r -- 1, then for each ct~NIteM m there clearly exists f :  D m,q --~M* in 

Ho(VS,) wi thf , ( i )  = a. Thus for  any dm,q-model M °, there exists f :  D m,q ---~ g *  

with f , ( i )  = i, and f :  D m'q ~-- M" by a homology argument. Moreover, by 12.2 
f , ( j )  = j  when r < q and f , ( j ) - j  E[Ttqg m+q, 7tqg re+q] when r --q. 

12.4. Pointed differentials in negative dimensions. For a pointed cosimpli- 

cial space Y', 0 < q < m,  and 1 < r < q, we define a relation dr: NrtqY m --" 

NItq+r_lY m+r by letting dr(a)=fl whenever there is a map U'Dr m'q'-" Y* in 

Ho(VS,) with u , ( i )  = a and u , ( j )  = ft. This is dearly natural in I "  and 

LEMMA 12.5. Suppose that the pointed differential dr is defined on 

NItq(X m, b), and  let f :  Y ' - ' Z  ° be a pointed cosimplicial map  such that 

f , :NTt ,  Y S ~ N r t t  Z~ for  m < s  < m  + r ,  q < t < q + r  - 1, and  t - s  > - 1. 

Then the pointed differentials 

dr: NTtqym~NTtq+r_l Ym+r, dr : Nltqzm~STtq+r_l zm+r 

correspond under f , .  

PROOV. We may assume 11" and Z ° fibrant and obtain equivalences 

f :  Pr-h Map,  (D~ ''q, Y') "0 Pr-k Map,  (D~"q, Z °) 

for 1 < k < r by induction on k. The result follows when k = r. 
For the fibrant cosimplicial space X', we use the pointed differentials of  12.4 

in the construction of 11.3 to give 

12.6. General differentials in negative dimensions. These are relations 

dr: NItq(X m, b ) ~  NTtq+r_l(X re+r, b) 

for 0 < q < m and 1 _-< r < q where b ~Totr  X" is a vertex such that the 

Whitehead products between rtq(X m +r,b)  and the image of 

b , :  rtr(SkrA m +r, 0)--, rtr(X m +', b) are trivial. This holds automatically when b 

is liftable to Tot, +~ X'. 

We also use 12.4 in 11.4 to give 
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12.7. Improved general differentials in negative dimensions. 
relations 

d,.: Nrc,~(X m , b)~Nnq+,_l(X ''+', b) 

These are 

for 0 < q < m and 1 < r < q where b E Tot,_ 1 X" is a vertex liftable to Tot, X" 
and such that [rtr(X m +r, b), ltq(X ra +r, b)] -- 0. 

The following results on these general differentials are easily verifed by 

reducing to the pointed case. 

12.8. Formula for dx. For q < m, a general dt : STtJq(X rn , b) ~ NTgq(X m +1, b) 

equals the function ( - 1) q -"  + ~ of  2.2. 

12.9. Naturality properties. For q < m, a general dr : Nff.q(X m, b) 
NTCq+r_l(X re+r, b) is natural in X" and b ~ T o t ,  X" (or b ~ T o t , _ t  X" in the 

improved case 12.7), i.e. for cosimplicial maps and path classes. 

12.10. Additivity properties. For q < m, a general dr : N1tq(X m, q) 
NT~¢+r_I(X m+', b) always gives d,(0) -- 0 and is additive for r < q (or r = q in 

the improved case 12.7). This follows by constructing appropriate homotopy 
classes Dr m 'q --* D m 'q v D m,q. 

12.11. Domain and indeterminacy properties. For a general 

dr: N~q(X", b)~N~q+r_l(X m+', b) with q < m and r > 2, the domain of  dr 

equals the kernel of  d, _ i, and the indeterminacy of  dr equals the image of  dr_ 1. 

This follows since there are homotopy cofiberings 

Dm + r_1,q + ,_ 2 j , Dm_, ~ ~ Drm,q ' D~,, q i , Din,# ___,Dm~1,q+1 

by 12.3 because the homotopy cofibre of  i is a d~ + ~,q + kmodel. 

12.12. Obstruction properties. For a vertex b ~Totm- i  X" with m >_- 2, the 

obstruction c(b)EN~m_t(Xm, b) lies in the kernel of  each general 

d,: NTtm_l(X m, b)~NTfm+r_e(X re+r, b) with r < m - 1 (or r = m - 1 in the 

improved case 12.7). This follows using the universal example Skm_lA* 
made fibrant with b = 1, together with the following vanishing results ob- 

tained as in 12.2: (i) for m > 3 and t < 2 m -  3, the group NntSkm_lA s is 

isomorphic to ntS m-l for s = m and to 0 otherwise; (ii) for m > 3 the group 

ST[2m -3Skin _ IAS /N[ ltm - I S k m  - 1 As , ~m - 1Skin - 1 As ] is isomorphic to 
X 2 m _ 3 S m - l [ [ ~ m _ l  S m - l ,  ~ m _ l  S m - l ]  when s -- m and to 0 otherwise; (iii) for 

m = 2, the group N(AbnlSkIE ~) is isomorphic to Z for s - - 2  and to 0 

otherwise. 
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12.13. Composition properties. For r,s > 1 and 1 < q  < m ,  let b E  
Tot,+s_lX" be a vertex with trivial Whitehead products between 
7tq(X m+r+~, b) and the image of 

b , :  n,+,_l(Sk,+s_lA m+r+ ,̀ O)"*Tfr+s-l(X m+r+s, b). 

This holds automatically when b is liftable to Tot,+, X'. Assume one of the 
following: 

(i) r+s<-_q. 
(ii) r + s = q + 1 and [nq(X m+r+~, b), nq(X m+r+`, b)] = 0. 

(iii) s < q = m. 
(iv) s -- q - m and [7~q(X m+'+', b), 7tq+r_t(X m+r+s, b)] - 0. 

Then the general differentials 

Nn,(X ~, b) a, Nztq+r_,(X,,,+r, b) A NTfq+r+s_2(xm+r+s, b) 

are defined and have range dr = ker ds. After reducing to the pointed case, this 
follows for q < m by applying 12.2 to the model D m,q, and follows from q = m 
by using 12.12. 

12.14. Equivariance properties. For q < m, suppose that the general differ- 

entials 

d,:Nnq(X",b)--Nnq+,_l(X'+',b), d,:Nnl(X°,b)~Nnr(X',b) 

respectively give d , y - - z  and drw = 0. Then the former gives d,(yw)= zw 
using the fundamental action of 7q(X °, b). This follows by the naturality of dr 
in b since w lifts to 7tl(TOt, X', b). 

12.15. Hurewicz properties. For a general d," NTf¢(X m, b) 
N~q+,_I(X ~+', b) with q < m and ringR with identity, there is a correspond- 
ing homology differential d,: NHq(Xm; R ) ~  NH¢+,_I(xm+'; R) of [6] which 
gives d,(hx) = hy whenever d,x = y for x E NTEq(X m, b). This follows by natur- 
ality since it holds for our model Dr m,q by definition. 

§13. Construction of the homotopy spectral sequences 

The spectral sequences of 2.4-2.6 are now immediately obtained by assem- 
bring the general differentials of Sections 11-12. We briefly outline the case of 
2.4, the other cases are very similar but involve the improved general 
differentials. We shall use 
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13.1. Partial group actions. Apartial right-action of a group G on a set Wis 

a relation * : W × G ~ W such that: (i) w • e -- w for each w E W; (ii) w • g = x 

implies x • g -  ~ --- w; and (iii) w • g ffi x and x • h -- y imply w • gh = y. There 

is an associated equivalence relation ~ on W, where w -~ x means w • g -- x 

for some g E G, and W~ ... is called the orbit set of  Wunder  the partial action. 

For an additive (but possibly non-abelian) group B with fight-action by G, 

each crossed-additive relation k:  G ~ B (as in 11.9) determines a partial right 

action of  G on B where b • g = bg + r whenever k(g) = r. 

13.2. Construction of {E:.'(X', b)} in 2A. For r > 1 and bETot,_~ X" 

liftable to Tot2,_2 X', we construct Ej't(X ", b) as follows using the general 

differentials and their properties from Sections 11-12. When r -  1, 

Ef.t(X ", b ) =  Nltt(X', b). When r > 2, E°'°(X TM, b) is the free kernel of  the 

bottom differential (11.14) d,_~: xoX°~N~,~_mX ' for t >-_ 1, E°'t(X ", b) is the 

kernel of  the general d ,- i  : N~t(X °, b)~N~t+ , -2 (X  ' - l ,  b) for 1 < t < r - 1; 
Etr't(X ", b) is the orbit set of  the kernel of  the general d,_l : N~t(A n, b ) ~  

NT[t + r -  2( x t  + r-1,  b) under the partial right action associated via 13.1 with the 

crossed-additive (11.9) general dt :N~(X° ,b)~N~t(Xt ,  b); otherwise, 

E~.t(X ", b) is the quotient of  the kernel of  the general d,_~:N~t(X ~, b ) - .  
Nxt+,_2(X~+'-~,b) by the image of  the general dk:N~,_k+~(xs-k,b)~ 
N~t(X ~, b) where k - - ra in{s ,  r -  1}. The spectral sequence differentials are 

induced by the general differentials and the bottom differential. 

APPENDIX 

§14. On the homotopy theory of groupoids and cosimplicial groupoids 

For a fibrant cosimplicial space X', the cosimplicial fundamental groupoid 

~fdx" contains important information applicable to the lifting problem for 

vertices in {Tots X'}. In 5.1 we obtained a natural correspondence 

7~°7~oX" ~ (7~o Toto X') °) = Im(7~o Toh X" ~ ~o Toto X'). 

Here, we shall introduce a set ~ f d X "  and obtain a natural correspondence 

~llrf dX*~ (~o Toh X') °) -- Im(~o Toh  X*-- ~o Toh X'). 

Thus a vertex b E X ° - -  Toto X" will be liftable to Tot2 X" iff [b] belongs to 
7r°Zro X" and lies in the image of  the tower map 7r~TrfaX " ~  7r°TroX ". When the 

spaces X ~ have abelian fundamental groups, the image condition can be 

replaced by the vanishing of the obstruction (.o2(b)~/[2/[l(XW~ b) of 5.2, and 
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such obstructions may possibly be defined in other settings using nonabelian 
cohomology. However, in general it seems homotopically most  natural to use 
tt ~ltfdX ". We start by assembling the homotopy theory of  groupoids introduced 
in [l ], [10], I14], and elsewhere. Then we prolong that theory to cosimplicial 
groupoids. For a cosimplicial groupoid G °, we introduce the total groupoid 
Tot G ° and define 1rIG'= 7to Tot G" generalizing ~1 from the cosimplicial 
group case (2.2). This leads to the formula lt~Tti~dX " ~ (tt0 Tot~ X') °). 

14.1. The homotopy theory of groupoids. Let l r ~ d : S ~ G d  denote the 
fundamental  groupoid functor from simplicial sets to groupoids. Thus for 
K ~ S ,  ~tfdK is the groupoid whose vertices (i.e. objects) are the vertices of  
K and whose morphisms from x to y are the path classes from y to x. The 
funtor ltf d has a right adjoint B :Gd ~ S where BG is the categorical nerve of 
G. The adjunction counit gives an isomorphism nfdBG ~ G for each G ~ Gd, 
and thus B is fully faithful. There is a mapping groupoid Map(G, H)  whose 
vertices are the functors G -~ H and whose morphisms are the natural trans- 
formations; moreover, 

Map(F X G, H)  ~ Map(F, Map(G, H)) for F,  G, H E Gal. 

Since xf d: S ~ Gd preserves finite products, adjunction gives 

B Map(ltfdK, H)  m, Map(K, BH) for K E S and H E Gd. 

By [2], Gd is a closed model category [20], where a map ~ : G ~ H in Gd is: 
(i) a weak equivalence iff ~ is a categorical equivalence; (ii) a cofibration iff ~ is 
monic on vertices; and (iii) afibration ifffor each vertex g E G and morphism u 
to ¢(g) in Hthere  exists a morphism t~ to g in G with ~(~) = u. Moreover, Gd is 
a closed simplicial model category [20] with 

G ® K  = G × 7t~dK, G x = Map(TtfdK, G), 

and function space BMap(G,H) for G , H ~ G d  and K E S .  Examples of 
fibrations in Gd include full functors ~ : G ~ H surjective on vertices and 
covering maps ~ : G - ~ H ,  i.e. fibrations such that the above lifting t~ exist 
uniquely. A map  ¢ : G  ~ H  in Gd is a weak equivalence or fibration iff 
B(~ : BG --, BH is such. Whenever a map f :  K ~ L in S is a weak equivalence, 
cofibration, or fibration, then xfaf: 7tfdK--~ nfdL is such. Finally, note that 
each G E Gd is cofibrant and fibrant. 

For a groupoid G, let It0G = Vert G~ ~.. For a vertex x E G, let g0(G, x) -- 
(1toG, x), let t t , ( G , x ) = A u t  x, and let z~ i (G,x)=0 for i > 2 .  Weak 
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equivalences and fibrations in Gd produce the usual isomorphisms and exact 
sequences of ~r,-terms. For x E G E Gd and y E Y E S, there are natural isomor- 
phisms ni(BG, x) ~ n~(G, x)  when i > 0 and 7tj(Y, y) ~ nj(nfdY, y) w h e n j  = 

0, 1. 

14.2. The homotopy theory of cosimplicial groupoids. The above nf d and B 
prolong to adjoint functors ~Zfd: VS '~  V G d : B  between the categories of 
cosimplicial spaces and cosimplicial groupoids. There is a mapping groupoid 
Map(G °, H °) and are natural isomorphisms 

Map(F X G ° , /P )  ~ Map(F, Map(G ° , /P))  ~-, Map(G', Map(F, H°)) 

of  groupoids for F E G d  and G ° , / / ' E V G d .  There is also an adjunction 
isomorphism B Map(TtfdX ", H °) -~, Map(X', BH °) for X ' E  VS a n d / - f i e  VGd. 

The category VGd has a closed simplicial model category structure, similar 
to that of VS [8, p. 277], where a map ¢ : G ' ~ / - / "  in VGd is: (i) a weak 
equivalence iff ¢ : G m ~ H m is a weak equivalence in Gd for m > 0; (ii) a 

cofibration iff ~ restricts to a cofibration of the vertex cosimplicial sets; a 

fibration iff the maps 

((~, S) : G m "" H m XM--,n'Mm-IG" 

are fibrations in Gd for m > 0 where (¢, s) is as in [8, p. 275]. A map 
f~:G°-- ,H ° in VGd is a weak equivalence or fibration iff B ~ ) : B G ° ~ B I P  is 
such. Whenever a map f :  X'--* Y" in VS is a weak equivalence or cofibration, 
then r~faf: rtfaX "--" r~faY " is such; likewise, whenever f :  X" ~ Y" is a fibration of  
termwise connected fibrant objects, then nfafis such by [6, 5.2-5.3] since Brtf a 
is a generalized Postnikov functor. If  ~: G'-- / - /"  is a map of termwise 
connected cosimplicial groupoids such that each ~ : G," ---- H," is full and each 
(~, s):G,"-- .H," × ~ - , n M m - ' G  is surjective on vertices, then each (~, s) is 
full and ¢ :  G'---/-/" is a fibration as in [6, §5]. In particular, a quotient 
homomorphism of cosimplicial groups is a fibration in VGd. However, VGd 

has non-fibrants such as nfaA .. 

14.3. Total groulmids. A cosimplicial groupoid G ° has a total groupoid 
Tot G" = Map(nfaA ., G') and tower of groupoids Tot," G" = 
Map(nfaSk,,/l °, G°), satisfying B Tot G ° ,~ Tot BG" and B Tot,. G ° .~ Totm BG" 
by adjunction. In more detail, Tot0 G" -- G°; Toh G" has vertices (x, u) where 
x E o b j G  ° and u:d°x---d~x in G ~ with s ° u = l ,  and has morphisms 
a : (x, u ) - ' ( y ,  v) for a : x - - -y  in G o with (dla)u = v(d%); the tower map 

TOtl G ' - - T o t o  G" is a covering sending each (x, u) to x; Tot2 G ° is the full 
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subgroupoid of  Toh  G" given by all (x, u) with (d2u)(d°u)(d~u)-~= 1; and 
Tot  G" ffi TOtm G* -- Tot2 G" for m _>- 2. For a map 0 : G" ~ / - / "  in VGd: (i) if 
is a weak equivalence (or more generally if ~ : G" ~ H" is an equivalence for 
n = 0 ,  1 and faithful for n --2), then each TOtm ~ : TOtm G ° ~  Totm/-/" is an 
equivalence; and (ii) if ~ is a fibration (or more generally if ~ : G °-~ H ° is a 
fibration), then each Tot,. 0 : Tot,. G °--* Tot,. H ~ is a fibration. 

For a cosimplicial groupoid G', we define lr~G ° = 7r0 Tot G" and lr°(G °, b) = 
x~(Tot G', b) for any vertex b ~ Tot  G'. There are evident ~ isomorphisms for 
weak equivalences and x* exact sequences for fibrations of  cosimplicial 
groupoids. When G ° is termwise connected with a vertex b ~ T o t  G', the 
definitions of  2.2 apply to the cosimplicial group lh(G °, b), and there is a 
bijection trln~(G ., b) ~ u~G" and isomorphisms n%t~(G', b),~ ~°(G', b) 
obtained using the weak equivalences 

n~(G', b)*-  G" # , G" 

where fl is given by b : nfdA'-,  G" on vertices. Finally 

PROPOSITION 14.4. For a fibrant cosimplicial space X', there is a natural 
bijection (it0 Toh X') (~) ~ X~xfdX " 

PROOF. It suffices to show that X ' -~  BTtfdX * induces 

(Tt0 Toh X') °) ~ (Tt0 Toh  BltfdX*) °). 

since deafly 
0t0 Totl BTtfdX*) O) ~ (Tt0 Toh  lt~X') O) ~ ltl/tfdX ". 

Assuming by reduction to components  that X" is connected, this follows by 
3.1 and 5.1 since X'~Blt fdX" is a map of fibrant objects inducing 
7tfd(X ") ~ ~fd(B~fdX'). 
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