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ABSTRACT
For a pointed cosimplicial space X, the author and Kan developed a spectral
sequence abutting to the homotopy of the total space Tot X™. In this paper, X*
is allowed to be unpointed and the spectral sequence is extended to include
terms of negative total dimension. Improved convergence results are
obtained, and a very general homotopy obstruction theory is developed with
higher order obstructions belonging to spectral sequence terms. This applies,
for example, to the classical homotopy spectral sequence and obstruction
theory for an unpointed mapping space, as well as to the corresponding
unstable Adams spectral sequence and associated obstruction theory, which
are presented here.

§1. Introduction

Recall from [8] that Tot X* is the mapping space Map(A®, X*) where A® is
the cosimplicial space of standard simplices A™ for m = 0. Assuming that X*
is made fibrant, Tot X* is also the inverse limit of the tower {Tot, X*}
of fibrations with Tot, X* = Map(Sk,A®, X*) for s =0 where Sk, is the s-
skeleton functor. The spectral sequence {E}'(X*, b)} of [8], abutting to
{n,_(Tot X*, b)} for a vertex b €Tot X*, was constructed as the homotopy
spectral sequence of the tower {(Tot, X*, b)} and has E5(X*, b) = n°n,(X*, b)
for t = 5. It was “fringed” in dimension zero, since there were no negative
dimensional terms to receive differentials. This construction has long
seemed unnecessarily restricted and can obviously be extended at the E,-
level. Acting in the spirit of [9], we obtain our present version of the spectral
sequence by constructing an array of differential relations on the nor-
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malized homotopy of X*, using universal cosimplicial models when needed.
For any vertex b€Tot, X* liftable to Tot,, X* with m =1, we obtain
a truncated spectral sequence {E}'(X,b)};<,<m+1 Where EN(X®, D) is
defined for

t=s=0 or t—r;(r—l)(s—r) withs = r,

and where E!'(X*, b) depends only on the projection of b to Tot,_, X"
As usual, E, (X" b) is determined by the action of d, on E.(X*,b),
although certain differentials are relational. For a vertex b E&Tot X* this
produces the desired spectral sequence {E;*(X", b)}. For a vertex b € Tot, X*
with n = 0, we define natural obstruction elements y,(b)EE***(X*, b) for
1 =r =(n + 2)/2, and show that y,(b) = 0 iff the projection of bto Tot,,_, ., X*
lifts to Tot, ., X*. Here we use our truncated spectral sequences. We define
similar obstructions to lifting paths. Our homotopy spectral sequence and
obstruction results have improved versions when certain Whitehead products
vanish in X*,

We obtain results on the convergence of {E}(X", b)} to m,_(Tot X, b) for
t —s 20, and we derive a comparison theorem showing that a cosimplicial
map f: X*— Y* induces an equivalence Tot X®~Tot Y* when it induces a
suitable E,-equivalence for some r. We also obtain a natural Hurewicz map
from {E}*(X®, b)} to the R-homology spectral sequence { E;*(X*; R)} of [6] for
a ring R. In fact, our sign conventions are chosen to permit this. Turning to
examples, we first discuss an extended version of the classical homotopy
spectral sequence and obstruction theory for a mapping space Map(K, L) with
E,-term {H*(K; n,L)} and with a Hurewicz map to an Anderson homology
spectral sequence. We then discuss the corresponding unstable Adams spectral
sequence and obstruction theory with E,-term {Der&, (H, K, H,L)} and with
a Hurewicz map to a homology spectral sequence involving derived Lannes
functors. Many other examples can be developed; for instance, our machinery
applies to the homotopy inverse limit spectral sequences of [8] and to the
unstable Adams spectral sequences of Dwyer-Miller-Neisendorfer [12] and
Dror-Zabrodsky [11].

The paper is organized as follows: Section 2 presents our general homotopy
spectral sequence; Section 3 explains its agreement with the tower homotopy
spectral sequence; Section 4 contains convergence results; Section 5 develops
our cosimplicial obstruction theory; Section 6 gives connectivity and com-
parison results for total spaces; Section 7 extends the classical homotopy
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spectral sequence and obstruction theory of a mapping space; Section 8 deals
with derivations over the Steenrod algebra; Section 9 develops the unstable
Adams spectral sequence and obstruction theory of a mapping space; Sections
10-13 contain detailed constructions underlying our results; and Section 14
is an appendix on the homotopy theory of groupoids and cosimplicial
groupoids, with a general application to the lifting problem for vertices in a
tower of total spaces.

This paper extends joint work with D. M. Kan and constitutes an expanded
response to some questions posed by E. Dror-Farjoun, H. Miller, and
J. Neisendorfer. We work simplicially and generally follow the terminology of
[8], so that “space” means “simplicial set”.

§2. The homotopy spectral sequence of a cosimplicial space

After needed preliminaries, we present our general homotopy spectral
sequence, postponing the main constructions and proofs to Sections 10-13.
Our domains of definition for spectral sequence terms are not best possible but
seem most convenient. Throughout this section, X* will be a fibrant cosimpli-
cial space.

2.1. The homotopy of X*. For ¢ = 0, X* has unpointed normalized homo-
topy Nrf=X™ consisting of all x Exf*X™ =[S!, X"]s. such that six€
rfeX™ -1 is trivial for 0 <j < m, and for a vertex vEX™, X* has normalized
homotopy

N (k™ 5= () Ker(sh: 7,(X™, 1) — m(X™~", s'n)).

j=0

For a vertex b ETot, X, let b also denote the projected vertex b, € Tot, X*
for k=q and the vertex (d")"b,€EX™ for m=0. Thus Nr,(X™,b)
denotes Nm,(X™,(d")"b,). The homomorphism (d")7%: m,(X°, b)— n,(X™, b)
induces a right action by #,(X°, b) on Nn,(X™, b) C n,(X™, b) for ¢t = 1. Recall
that a vertex b €Tot, X*is a cosimplicial map b : Sk,A*— X*. For ¢ = 1 there is
a cosimplicial group n(X", b) = {n,(X™, b)}zo for each vertex b ETot, X*
such that, for each m=z=0, n(SkA™,0) acts trivially on m(X™,b)
via b, : m,(Sk,A™, 0)— m,(X™, b) where 0EA™ is the initial vertex. This
is automatic when b ETot, X* lifts to Tot, X®, or when the spaces X™ have
simple components.
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2.2. The cohomotopy of a cosimplicial group. A cosimplicial group G* has
normalized groups

m-—1
NG™ = (N ker(s: G™"—G™ )

j=0

for m = 1. When G" is abelian there are coboundary homomorphisms

m+1
o= Y (—1)/d/: NG™ = NG™+!
j=0
giving cohomotopy groups H™(NG®) = n™G". In general, the group NG° right-
acts on each group NG™ by

a-x={d"H"x] 'al(d)"x] forxENG® and aENG™.

There is a coboundary function d : NG®— NG' with dx = (d'x) ~'(d°x) which
is a crossed-homomorphism and determines (see below) an associated right-
action * of the group NG° on the set NG' with y *x = (d'x) ~'y(dx). There is
also a coboundary function é : NG' — NG? with dy = (d*y)(d°yXd'y) ~* which
satisfies &y *x) = (dy)-x for each yENG' and x ENG®. The cohomotopy
group n°G*® is the kernel of 6: NG°— NG', and the pointed cohomotopy set
n'G* is the quotient of the kernel of §: NG' — NG? by the *-action of NG°.
There is no reasonable coboundary function 6 : NG™ — NG™*! for m = 2, but
we shall use the alternating product

ox) = (@°x)d'x) " Hdx)- - -(@"*+'x)*!
when necessary, although 66 need not be trivial. Generalizing 7°G*®, we let
2o = {x €| d°% = d'x}

for a cosimplicial set J°. For a group B right-acting on an additive (but possibly
non-abelian) group M, a crossed-homomorphism f: B — M is a function with
flab) = (fa)b + fbfor each a, b € B. The crossed-homomorphic action of B on
the set M is defined by m *b =mb + fbfor mEM and bEB.

2.3. Relations. A relation f:A— B from a set A to a set B is a subset
S C A X B, with the notation f(a) = b indicating (a, b)E f. We define

domain f= {a €A |f(a) = b for some b EB},

image f = {bEB | f(a) = b for some a EA}.
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When A4 and B are pointed, by 0€ 4 and 0E B, we define

kernel f = {a €4 | fla) =0},

indeterminacy f = {b € B | f(0) = b},
and we call f pointed when f(0) = 0. We can now introduce

2.4. The spectral sequence {E;*(X*, b)}. Forrz1,let bETot,_, X*be a

vertex liftable to Tot,,_, X*. Whenr = 1 and s = 0, E/(X®, b) = Nn,(X°, b) as
a pointed set for ¢ = 0, as a group with right E}!(X®, b)-action for ¢ = 1, and as
an abelian group with right E®Y(X® b) action for t=2. When r=2,
E3{(X®, b) = n*n, (X", b) as a pointed set for (s, 1) =(0,0)or (s, ) =(1, 1), as a
group for (s, t) = (0, 1), and as an abelian group with right E$'(X®, b)-action
for t = 2 with s = 0. When r = 2, E¥'(X*, ) is defined for

r
tzsz=0 or t—ré(

)(s—r) with s = r:
r—1

it is a pointed set for 0=s=¢=r — 1, a group for (s,#)=(0, 1), and an
abelian group with right E*! (X*, b)-action otherwise. The terms E3“(X*, b) are
natural in b €Tot,_, X* and X°, i.e. for path classes in Tot, _, X* and cosimpli-
cial maps. Next, assume that E'f (X", b) is defined; thus, for r =1, let
bETot, X* be a vertex liftable to Tot,, X* and suppose that

r—1
r

tzsz0 or t——r—l;( )(s—r—l) withs =r+ 1.
Then there is a differential 4, going out of E3*(X®, b) and consisting of: a
pointed relation d, : E®°(X®, b) — Nn™, X" with domain E®°(X*, b); a pointed
relation

d,: EP(X°, b)— E{*"*"~ (X", b)/E}' (X, b)

for 1 =t =r—1 with domain E**(X°, b) where “/” forms the orbit set; a
crossed-homomorphism d,: E*'(X*, b)— E’"(X*, b); a pointed function
d,.: E/"(X*, b)— E**~ (X, b) such that

d(y*x)=(d,y)x forx€E> (X%, b) and y€EE(X*b)

using the crossed homomorphism action y*x=yx +d.x; and an
E®'(X*, b)-equivariant homomorphism d,: ES/(X®, b)— E:*+ ~1 (X", b)
otherwise. The differential d, is natural in hE€Tot, X* and X°. It satisfies
d.d, = 0 whenever the composition is defined, and E¥ (X®, b) is given by: the
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set of all x€EEX(X*, b) with d,x =y for some trivial y € Naf™ X" when
(s, t) = (0, 0); the kernel of d, on E:*(X*, b) when s <r and (s, ) # (0, 0); the
orbit set of the kernel of d, on E’"(X®, b) under the crossed-homomorphism
action by E*' (X", b) when (s,t)=(r,r); and the ordinary homology with
respect to d, at ES'(X®, b) otherwise. When r = 1, the differential

d : EP(X°, b)— E{* (X", b)

equals (—1)!~*"19: Nn,(X*, b)— Nrm,(X**'b) in the cosimplicial group
n, (X, b) for ¢t = 1, and the differential

d, : EYYX*, b)— NnfreX"

equals (d° d"),: mX°— Nnf=X'. We thereby recover the fact that
E3(X°, b) = n*mn (X, b).

For a vertex b €Tot X®, we now have a spectral sequence {E,(X®, b)} 1<, <o
which, we shall see, generalizes and extends the spectral sequence of [8] and
[9]. Likewise, for a vertex b € Tot,, X* liftable to Tot,,, X* with 0 = m < w0, we
have a truncated spectral sequence {E,(X*, b)},<,<m+:- In general, E,(X*, b)
and d,_, depend only on the projected vertex b € Tot, _, X*; however, when
Whitehead products vanish in X*, they will depend only on # €Tot,_, X* and
will be more widely defined as follows.

2.5. On {E;*(X", b} when Whitehead products vanish. Suppose that all
Whitehead products vanish in the spaces X for s = 0. This is automatic when
X°® is “grouplike” as in [8, p. 275]. For r = 2, let bETot,_, X* be a vertex
liftable to Tot,,_; X*. When r = 2,

Ei{(X*, b) = Nmn,(X*,b) and E3(X°, b)=n*n (X" b)

as pointed sets for (s, ¢) = (0, 0) and as abelian groups for ¢ = 1 with s = 0.
When r = 2, E*(X®, b) is defined for

tzsz0 or t—r+1;<r—l)(s—r+1) withs = r:

it is a pointed set for 0 <5 =t =r — 2 and an abelian group otherwise. The
terms E*(X®, b) are natural in bETot,_, X* and X°, i.e for path classes in
Tot,_, X* and cosimplicial maps. Next assume that EX{ (X®, b) is defined;
thus, for r = 1, let b €Tot,_, X* be a vertex liftable to Tot,,_, X*, and suppose
that
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t=5s=0 or t—r;(ﬂ)(s-r) withs =7 + 1.
r

Then there is a differential d, going out of E:*(X®, b) and consisting of:
a pointed relation d,: E**(X®, b)— Nrnf* X" with domain E%°(X, b); a
pointed relation

d,: E¥(X*, b)—E!{M** "~ Y(X*, b) forlst=sr—-2
with domain E!*(X®, b); a pointed function
d,: EI"V-Y(X% b)—E¥ "~2(X*, b) whenrz=2,

and a homomorphism d,: ES*(X®, b)— E:*"*7~1(X*, b) otherwise. The dif-
ferential d, is natural in b € Tot,_, X* and X". It satisfies d,d, = 0 whenever the
composition is defined, and E¥f (X, b) is given by the homology with respect
to d, at ES*(X®, b)asin 2.4.

Consequently, when X* has vanishing Whitehead products, we have a
spectral sequence {E, (X", b)},<,<, for bETot X* and a truncated spectral
sequence {E,(X*, b)},<,<m+2 for bETot,, X* liftable to Tot,,, ., X* with 0 =
m < . These extend the spectral sequences of 2.4.

2.6. Technical refinements. The notation [z, X*, n, X*] =0 will indicate
[7(X?, v), (X, )] =0in 7, ,;_(X*, v) for each j = 1, s = 0, and vEX®. For
m =0, let bETot,, X* be a vertex satisfying either of the conditions: (i) b is
liftable to Tot,, ., X* and 7, X°, 7, X*]=0 for 1 =t =2m + 1; or (ii) b is
liftable to Tot,, +» X° and [z, X*, n, X"J=0for 1 =t =m + 1. Then thereisa
truncated spectral sequence {E.(X® b)},5,<m+2 €Xactly as in 2.5. Next, for
m Zz 2, let bETot,, X* be a vertex liftable to Tot,,, X*. If [z, X*, n, X*] = 0 for
some ¢ with 1 =¢ = m — 1, then there is a natural pointed relation

dp: E(X°, D)= B33+~ 1(XT, b)

with domain E%'(X®, b) and kernel E%, (X", b); this d,, is a function when
t=m-—1.

2.7. Hurewicz maps of spectral sequences. For a pointed space (Y, y,) and
ring R with identity, let 4 : m,(Y, y,) = H,(Y; R) be the Hurewicz map given by
the composite of the forgetful map n,(Y, y,) — nf=Y with the unpointed
Hurewicz map h : zY — H,(Y; R). Thus 4 is a homomorphism for ¢ = 1 and
h[yl=[y — o] for t =0. This will induce a Hurewicz map & from the
(possibly truncated) homotopy spectral sequence {E:*(X", b)} of 2.4-2.6 to
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the homology spectral sequence {E;*(X®, R)} of [6] and 10.8. The spectral
sequence map £ will begin with the obvious maps

h: Nm(X*, b)— NH.(X*; R)
forr=1and
h:'n(X5, )= H(X*; R)

for'r = 2, and it will respect all differentials, including the relational ones. For
a vertex bE€Tot X*, the Hurewicz map 4 : {ES' (X", b)} — (ES*(X™ R)} will
abut to the Hurewicz map h: n,_,(Tot X*, b)— H,_,(Tot X*; R).

§3. Agreement with the tower spectral sequence

For a fibrant cosimplicial space X*, we now interpret the terms E:(X*, b) for
t = s as derived homotopy groups of fibers in {Tot; X*} when b is sufficiently
liftable. We thus see that our present spectral sequence extends that of [8]. As
in [8], but for non-pointed X*, we use

3.1. The derived homotopy exact sequence. For r=1 and s=0, let
bETot,,,_, X* be a vertex. Then for i =0, let m,(Tot, X*, b)"~V denote
the image of

n(Tot,,,_, X°, b)— m,(Tot, X°, b).

Consider the fiber Fib,(X®, ) of Tot, X*— Tot,_, X* at the projected vertex
bETot, X*. Let C; C n; Fiby,(X®, b) be the counterimage of 7,(Tot, X*, b)"~V
under z; Fib,(X*, b)— n(Tot, X*, b), and let K, , C 7; . (Tot,_, X°, b) be the
kernel of

ni+l(T0ts—l X.’ b)_’ni+l(T0t:-—rX‘a b)
Then form the group
n; Fibs(X., b)('_l) = C"/a*Kv".{.l for i ; 1

and the orbit set m, Fib,(X®, b)" 1 of C, under the fibration right-action by K;
when i = 0. There is now a derived homotopy exact sequence

e/ i+l(T0ts—r+l X.’ b)(r—l)_’ni-t-l(TOt:—rX.a b)(r-—l)

3

— 7, Fib,(X®, b))~V — n(Tot, X*, b)YV —m,(Tot,_, X°, b)" "

which is natural in X* and b €Tot,,,_, X", i.e. for cosimplicial maps and path
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classes in Tot,,,_, X*. All of its maps are group homomorphisms except for
the last three when i = 0. However, there is a fibration right-action * by
m(Tot,_, X, b)Y on the set 7, Fib,(X®, b)* 7, such that 3,(g) =0 *»g for
each g €n,(Tot,_, X*, b)" " and such that elements of 7(Fib,(X®, b)* ! are
in the same orbit iff they have the same image in m(Tot, X*, )"~ ", The
formula d,(g) = 0 *g implies that elements of x,(Tot,_, X*, b)*~" are in the
same right coset of ker 3, iff they have the same image in 7, Fiby(X®, b)¢~".
Letting d, denote the composite of

3
ni+l(Fibs—rX" b)(’_l)_’ni-i-l(TOts—rX.s b)(r—l)____‘_) 7 Flbs(X., b)(r—l),

when s = r, we recover the homotopy spectral sequence of [8, p. 281] with
E,-term {r; Fib,(X®, b)* "} when b €ETot X*.

3.2. Replacing =; Fib,(X*, b) by N=x,, (X%, b). Let bETot, X* be a vertex
for s = 0. By 10.2, there is a natural isomorphism

®: x; Fib(X*, b) = Nm, . (X°, b)

of groups for i = 1 and of pointed sets for i =0. Fors =2k =0, m =0, and
t = 1, the fundamental right-action of n,(Tot, X*, b) on the group Nz (X", b) is
defined via

n,(Tot, X*, b)— m,(Toty X°, b) = n (X", b)

from the right-action of #,(X°, b) on n,(X™, b) in 2.1. By the naturality of @,
the fundamental action of #,(Tot, X*, b) on =; Fib(X®, b) = N=; (X", b)
agrees with the fibration action. By 10.5, for s = 1 the fibration boundary

9, : m(Tot,_; X*, b)— m, Fib,(X*, b) = Nn,(X*, b)

is a crossed-homomorphim with respect to the fundamental action of
n(Tot,_, X*, b), and the crossed-homomorphism action (2.2) agrees with the
fibration action of n,(Tot,_, X*, b) on n, Fib,(X*, b) = Nn(X*, b).

3.3. Replacing #; Fib(X®, b))~ D by ES**{(X*%, b). Forr=1ands =0, let
bETot,,,_, X* be a vertex liftable to Tot,,_, X* (or to Tot,,_3 X® when
[7. X% n,X*]=0 for 1 =t =2r —3). Then by 11.5, the above ® induces a
bijection

@ n; Fib(X®, b)) V= EST(X%b) foriz0
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which is a group isomorphism for i = 1 and is natural in X*and 4. Using ®, the
derived homotopy exact sequence of 3.1 becomes

T i+1(T0ts—r+l X.’ b)(r_l)_’ni+l(T0ts—rX.; b)(r—l)

a
—, Ess*i(X*, b)— m(Tot, X7, b)¢ V= m(Tot,_; X*, b)),

Thus, when r>s=0 and =0, EX**(X%b) is the kernel of
n,(Tot, X*, b))~ —m(Tot,_, X*, b)*~Y. By 3.2 whenr =s,

8,: m(Tot,_, X°, b)"~V— E}*(X", b)

is a crossed-homomorphism with respect to the fundamental action of
n,(Tot,_, X*, b))~V on the group E;*(X*, b), and the crossed-homomorphism
action (2.2) agrees with the fibration action (3.1) of 7,(Tot,_, X*, 5)"~" on
E:*(X*, b). Finally, when s = r, the composition of

E{=rs 44 (X, b)= 7, (Tot,_, X, b)) — E* *i(X", b)
equals the differential d, of 2.4. Thus we have

3.4. Agreement of spectral sequences. For any b €Tot X*, the homotopy
spectral sequence {E'(X", b)} of 2.4 extends the tower spectral sequence of
[8, p. 281].

§4. Convergence of the homotopy spectral sequence

For a fibrant cosimplicial space X® and vertex b €ETot X*, we now show that
{E* (X", b)) converges to {n,_,(Tot X*, b)} under suitable conditions. The
problem of initially finding a vertex b € Tot X* will be discussed in Sections 5
and 6. First, we need

4.1. Infinitely derived towers of sets. For a tower {7},c, of sets T, and
functions T, — T, _,, let T denote the image of T,,, — T, for 0 = r < o0; let
T =, T?; and let T¢**) denote the image of the projection lim, T, — T;.
Also, for an element vE T, _, and any r, let T,(v)” denote the set of all x € TV
projecting to v. Clearly 7+’ C T¥ and T;(v)®*’ C T,(v), where the inclu-
sions may be proper since an element of T, may be “arbitrarily highly liftable”
yet not “consistently infinitely liftable.” The condition T**) = T\ holds for
each s if and only if T,(v)®*) = T,(v)* holds for each s and vET,_;. These
equivalent conditions hold whenever: (i) {7 } can be topologized as a tower of
compact Hausdorff spaces and continuous maps; or (ii) the descending se-
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quence {T;(v)"}o<r<o is eventually constant for each s and vET,_,. This
follows in case (i) since the inverse limit of a tower of nonempty compact
Hausdorff spaces is nonempty by a Tychonoff argument. Better results hold
when {7} is a tower of (possibly nonabelian) groups and homomorphisms
with T, = 0 for s <0. Then, the condition TI®*) = T holds for each s if and
only if T,(0)*) = T,(0)* holds for each s. Also then, by the proof of the
complete convergence lemma of [8, p. 263], the combined conditions T\**) =
T and lim}, T,, = 0 hold for each s if and only if lim! 7,(0)*” = 0 holds for
each s. Moreover, these combined conditions hold whenever: (i) {7} can be
topologized as a tower of compact Hausdorff groups (or linearly compact
%-groups [15]) and continuous homomorphisms; or (ii) the descending se-
quence {T;(0)"} is eventually constant for each s. This follows in case (i) by
[15, 3.1 and 3.2].

4.2. Complete convergence of {E;*(X°, b)}. For a vertex b €Tot X*, con-
sider the homotopy spectral sequence {E;*(X®, b)} and let

EXX*, b)= N E¥(X%b) fort=s20.

r>s

Then E%(X*, b) is a pointed set when ¢ = 5, a group when (s, t) = (0, 1), and an
abelian group with right-action by E%'(X®, b) otherwise. By 3.3, E*(X®, b) is
the kernel of

n,_,(Tot, X*, b))~ V—m,_ (Tot,_, X, b)Y whent=s5=0 and r>s,

and thus E%/(X®, b) is the kernel of n,_,(Tot, X*, b)) —x,_ (Tot,_, X*, b)®.
Fort =5 =0, let E%', (X*, b) denote the kernel of

m,—s(Tot, X, b)) —m,_(Tot,_, X, b)=*

as a pointed set when ¢t =5, a group when (s,¢)=(0, 1), and an abelian
group with right-action by EZ%. (X*, b)=m,(X° b)) otherwise. Then
E$' (X°, b) C EX(X®, b)asasubobjectfort =s = 0. Asin [8, p. 254), there is a
short exact sequence

0—lim; m; , (Tot, X®, b)— m;(Tot X*, b)—lim, m,(Tot, X*, b)—~0

of a pointed sets for i =0 and groups for i = 1. Thus 7z;(Tot, X*, b)®*) is the
image of m;(Tot X*, b)— n,(Tot, X, b), and {zm,(Tot, X*, b)*°*)},., is a surjec-
tive tower with

n(Tot X*, b)— lim, n;(Tot, X*, b)\>+)
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surjective for each { = 0. Consequently, the elements in the tower kernels
E3*F{(X® b) are all hit by elements of z,(Tot X*, b), while the remaining
elements of ES*{(X® b) are not. Given i =0, we say that {ES(X% b))
converges completely to m,_,(Tot X*, b) for t —s =i when ES*}{(X* b)=
E**i(Xx* b) for all s =0 and =,(Tot X*, b)—lim, n,(Tot, X°, b) has trivial
kernel. This last condition holds iff lim! z;, ,(Tot, X*, b) is trivial or, when
i = 1, holds iff n,(Tot X°, b) — lim, m,(Tot, X°, b) is is0.

4.3. Convergence results for {E:(X" b)}. Applying 4.1 to appropriate
subtowers of {x;(Tot, X*, )}, we obtain the following convergence results at a
vertex b €Tot X°. First as in [8, p. 263], for i = 1, the combined conditions
Es*H(X®, b) = ESFY{(X*, b) and lim}, m(Tot,, X*, b) = 0 hold for each s = 0 if
and only if lim! Ei**(X*, b)) =0 holds for each s =0. These combined
conditions hold whenever: (i) {n;(Tot, X*, b)} can be topologized as a tower of
compact Hausdorff groups (or linearly compact €-groups [15]) and con-
tinuous homomorphisms; or (ii) for each s =0 there exists r < oo with
ESHi(X®, bYy=E* (X%, b). Also for i=1 and j=1, the condition
Es* (X b)=ES**(X*,b) holds for each s=j—1 whenever
lim! E**/(X®, b) =0 holds for each s =j. Next for i =0, the condition
Esf, (X, b) = E(X*, b) holds for each s = 0 whenever {m, Tot, X*} can be
topologized as a tower of compact Hausdorff spaces and continuous maps. Our
remaining results for i = 0 may be slightly improved, using the modifications
indicated in square brackets, when

[z, X%, X*]=0 forl=t=r-1

as in 2.6. Given r = 1 [r = 2], if ES*~!(X®, b) = 0 for all sufficiently large s,
then ESf (X° b)=E$(X*,b) for all s=r [s=r—1]. Given r=1 and
kzZr+1[r=2and k=], if ES*(X®, b) is finite for all s = k, then

E (X", b)=EsS(X*, b) foralls =k —1.
When X® is not termwise connected, it is convenient to focus on
4.4. Components of X*. By 10.7 there is a natural correspondence
(7o Toty XV = 101y X°* = {a E M X° | d% = d'a}.

For each element a € 771, X*, let X* C X*be the cosimplicial subspace consist-
ing of the connected components X' C X™ at «, and let X7 = 11, X7 C X*. Then
X; and X? are fibrant and



66 A. K. BOUSFIELD Isr. J. Math.
U Tot,, X3 =Tot,, X? = Tot,, X*

for 1 =m = oo where Tot,, = Tot. A vertex b € Tot X* determines a connected
component X} with the same spectral sequence

(Es{(X3, b)) = {ES*(X%, b)}  for (s, 1) # (0, 0),

with m(Tot X}, b) =m,(Tot X°, b) for i>0, and with =ny(Tot X3,b)=
F'ny(Tot X*, b) where, more generally, F'my(Tot, X*, b) denotes the kernel of
ny(Tot, X°, b)— n(Tot, X*, b). We say that {ES(X®, b)} converges completely
to F'my(Tot X*, b) fort — s = 0 when ES*, (X®, b) = ESS(X®, b) foralls = 1 and
F'ny(Tot X*, b)— lim, F'n(Tot, X*, b) has trivial kernel. This is equivalent to
saying that {E}'(X3, b)} converges completely to n(Tot X3, b) for t —s = 0.
Now, amplifying parts of 4.3, we obtain

4.5. E,-criteria for complete convergence. For a given vertex b €Tot X°,
suppose that each arbitrarily highly liftable vertex a €Tot, X* with g, =
b,€ X is such that: (i) for each i = — 1, n°x, . ;(X*, a) = 0 for all sufficiently
large s; or (ii) 7w, (X" b) is finite for each s,i =0 except possibly for
(s, ) =(0, 0). Then {E*(X*, b)} converges completely to x,_(Tot X°, b) for
t —s>0and to F'n(Tot X*, b) for t — s = 0; thus

7:(Tot X*, b) = lim, n,(Tot, X*, b) for each i >0,

ssH{(X®, b) = EFTi(X", b) for each s, i = 0 except possibly for (s, i) = (0, 0),
and F'ny(Tot X*, b) =lim, F'n,(Tot, X*, b).

We conclude with a compact Hausdorff criterion for complete convergence,
which will require some preliminaries. “Space” will temporarily mean “topolo-
gical space”. Let fi, f; : A — B be continuous maps between compact Hausdorff
spaces 4 and B, and let ~ be the equivalence relation on B generated by the
elementary equivalences fy(a) ~ fi(a) for a€A. Let C = B/ ~ and suppose
that each equivalence class ¢ €C has a representative s, & B such that the
members of ¢ are all elementarily equivalent to s, (i.e. for each b € ¢ there exists
a €A with f(a) = b and fi(a) =s.). Then

LEMMA 4.6. The quotient topology of C is compact Hausdorff, and the
quotient map B — C is the coequalizer of f,, f,: A— B in the category of
compact Hausdor(f spaces.

Proor. The compactness of C is immediate. By [17, p. 146] the quotient
function e: B — C is an absolute coequalizer of f;, f; : 4 = B in the category
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of sets, because there are obvious splitting functions s: C—B and t: B—A4
with es = 1, fit = 1, and f;t = se. The lemma now follows from the proof in
[17, pp. 153-155] that the forgetful functor from compact Hausdorff spaces to
sets 1s monadic.

PrOPOSITION 4.7. Let L be a simplicial compact Hausdorff space which is
fibrant as a simplicial set. Then n,L is naturally a compact Hausdorff space
and n,(L,v) is naturally a compact Hausdorff group for each n >0 and
vertex vEL.

Proor. The quotient space 7oL of L, is compact Hausdorff by 4.6 since the
elementary equivalences determined by d,, d, : L, — L, form an equivalence
relation. Likewise, the quotient space m,(L, v) of L, = dy '(¥) N - - - N d; ' (v)
is compact Hausdorff by 4.6 applied to d,, d, : L, ,~ L, where

=di (L) ndr'L)nds\@n - Ndil()

Finally, the subtraction operation x, (L, v) X n,(L, v)— n,(L, v) is continuous
since it is induced by the quotient maps (d,,d,): L% ., —~ n,(L, v) X n,(L, v)
andd,: L% ,,—n,(L, v) where

L’:l+l = dO_l(I:n) N dl—l(En) N dz_l(iu) N d3_l(v) N-+--N dn_-lfl(v)-

We hope to further investigate compact homotopy theory, but we now
combine 4.7 with 4.3 to give

4.8. A compact Hausdorff criterion for complete convergence. Suppose that
{Tot, X*} is weakly equivalent to a continuous tower of simplicial compact
Hausdorff spaces which are fibrant as simplicial sets. Then, for each vertex
bETot X°, {E}*(X", b)} converges completely to z,_,(Tot X*, b) for each
t — s = 0. This applies, for instance, when X® can be topologized as a cosimpli-
cial simplicial compact Hausdorff space, or when 7;(Tot, X*, v) is finite for
each i, s = 0 and each vertex vE Tot, X". In the latter case we may construct a
weak equivalence from {Tot, X*} to a tower of minimal fibrations of fibrant
simplicial finite sets.

§5. Cosimplicial obstruction theory

Let X* remain a fibrant cosimplicial space. We shall develop an obstruction
theory for liftings of vertices and paths in the tower {Tot,, X*},,z0.
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5.1. The obstruction cocycle c(b). By 10.7 for m =0, a vertex b ETot,, X*
lifts to Tot,, ., X* if and only if the map ™ *+! : A+1 — ™ +1 js nullhomotopic.
Thus a vertex b € Tot, X* = X° lifts to Tot, X* if and only if [6] € 7, X belongs
to n%7, X*. For a more detailed analysis when m = 1, we define the obstruction
cocycle ¢(b)ENm,(X™*', b) to be the class of b™*1: A+, 0)—(X™*', b)
using the “reverse orientation” of A™*! je. using an equivalence
|(A™+1, 0)| = |(S™, *)| making [ — d1,,,]EH,A™*! correspond to [1,]E
H,(A"/A™)y = H,,S™. Thus

c(b) =[d'b")[db') '[d*']"' whenm =1.

In general by 10.7 and 12.12, ¢(b)E Nr,,(X™*1, v) has the properties:
(1) c(b) is natural in X® and in b, i.e. for cosimplicial maps and paths in
Tot,, X°.
(ii) c(b) =0 if and only if b lifts to Tot,, ., X*.
(iii) c(b) lives to the highest term EM™+1™(X®, b) defined by 2.4, 2.5, or 2.6.
Thus it lives to the term with ¢ = [(m 4 2)/2] in general, and with
t =[(m + 3)/2] when X" has vanishing Whitehead products.
We now introduce the higher order obstructions.

5.2. Obstructions to lifting vertices. For m = 0 and r = 1, suppose that a
vertex b €Tot,, X* is liftable to Tot,,,,_; X*. Then the rth order obstruction
class 0,(b) C Nty ., (X™*',b) is the set of all c(b) for vertices b€E
Tot,, ., X" lifting b. Clearly b € Tot,, X" is liftable to Tot,,,, X* if and only if
0€0,(b). Now suppose r=m +1 or r =m + 2 with [n,X*, 7, X*] =0 for
1 =t =2m + 1 using the notation of 2.6. Then, by 5.1 and 5.3 below, 0,(b)isa
coset forming an rth order obstruction element w,(bYyEEM™* ™+ =1(X* b)
which has the properties:

(i) w,(b) is natural in X® and b.

(ii) w,(b)= 0 if and only if b is liftable to Tot,, ,, X°.

(iii) @,(b) lives to the highest term EP*"™+'=1(X* b) defined by 2.4, 2.5,
or 2.6.

There is a convenient alternative version of this obstruction. For a vertex
a€Tot, X* with n = 0, suppose that 1 =r =(n + 2)/2 or r =(n + 3)/2 with
[r,X°, n,X*) =0 for 1 =t = n. Then the rth order obstruction element y,(a)E
Er*tn(X*, q) is defined by ,(@) = w,(a,_, ). Clearly y,(a) = 0 if and only if
the projection of a € Tot, X* to Tot, _, , ; X*lifts to Tot, , , X*. Moreover, when
7, +1(@)EErFM(X®, b) is defined, it is given by [y,(a)].
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5.3. The difference cochain D(a,J, b). For vertices a, b ETot,, X* with
m =1 and a path J: A' — Tot,,_, X* from a,, _, to b, _,, the difference cochain
D(a,J, b)ENr,(X™, b) is represented by a map

(@)™ b™: A 1j= A™ — X™

using the “left minus right” orientation, where aJ € Tot,, X® is the endpoint of
a path from a €Tot,, X" lifting J. Equivalently, D(a, J, b) = ®([a][ J]) using
the bijection

® : n, Fib,,(X*, b) = N=,,(X™, b)

of 10.2. Thus D(a,J, b) =[d'J]"'[a'l[d°J][h'] "' when m = 1. We denote
D(a,1,b) by D(a,b) when a,,_,=b,_,. In general, by Sections 10-12,
D(a,J, b)E Nm,(X™, b) has the following properties:
(i) D(a, J, b) is natural in X* and in (a, J, b).
(ii) D(a,J, b) = 0 if and only if J lifts to a path from a to b.
@) If a=»>b then D(b,J,b)=0,[J] using 9,:m= Tot,_,(X°, b)—
Nrn,.(X™, b) of 3.2.
(iv) D(a, J, b)[K]+ D(b, K, c) = D(a, JK, c) for each vertex ¢ ETot,, X*
and path K: A'—Tot,,_, X* from b,,_, to ¢,,_, where [JK] = [J][K].
V) If mz2 or m=1 with ¢(b) in the center of =m (X% b), then
é6D(a,J, b)=c(b) — c(a)[J] in N=m,(X"*! b). More generally, for
r = 1, suppose that a, b ETot,, X* lift to vertices 4, b ETot,,,,_, X*,
where b is sufficiently liftable so that E™7(X*, b) is defined by 2.4, 2.5,
or 2.6. Then D(a,J,b) lives to E™™(X*, b) and d,[D(a,J, b)) =
[c(@)[J] — c(b)] in the target E™ "™+ ~1(X*, b) of the differential d, on
E™m™(X*, b). This target has ¢t = min{r, m} in general, and has ¢ =
min{r, m + 1} when X* has vanishing Whitehead products.
(vi) For each element « € Nn,,(X™, b) there exists a lifting a’€Tot,, X* of
J(O)ETot,,_, X* with D(a’, J, b) = a.
(vii) For r = 1 suppose that b ETot,, X® lifts to a vertex b ETot,, ., X*
which is sufficiently liftable so that E™,7(X®, b) is defined by 2.4, 2.5, or
2.6. If D(a, J, b) lives to E™™(X*, b) and if «ENm,,.,_(X™*", b) is
an element with d,[D(a, J, b)] = [a] in the target E™*"™*"~1(X*, b)
of d,, then a€E€Tot,, X* lifts to a vertex dE€Tot,,,_, X* with a=
c(@[J]— c(b) in Nz, ., (X", b).

5.4. Obstructions to lifting paths. Form = —landr=z1withm +rz1,
suppose that a, b €Tot,, ., X* are vertices and J : A! = Tot,, X* is a path from
a, to b, liftable to a path froma,,,,_,to b,,,,_,in Tot,,,,_; X*. Then the rth
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order obstruction class 9,(a, J, b) C Nm,, ,,(X™*", b)is the set of all D(a, J, b)
for paths J: A' = Tot,,,,_; X* froma,,,,_,t0 b, ,,_, lifting J. Clearly J: A'—
Tot,, X* is liftable to a path from a to b in Tot, ., X* if and only if 0€
2.a,J,b). Now suppose that a, b€ Tot,, ,, X* are liftable to Tot,, ., X~
Then, by 5.3 and 5.5 below, 2,(a,J, b) is a coset forming an rth order
obstruction element V,(a,J, b))EE"*~™*"(X*, b) which has the properties:

(1) V,(a,J,b)is natural in X® and in (a, J, b).

@ii) V,(a,J,b)=0 if and only if J is liftable to a path from a to b in
Tot,, ., X~

(ii) If a=5 then V,(b,J,b)=9,[J] using 9d,:7 Tot,(X* b)) V—
Ertrm*r(x* b)of 3.3.

(iv) Let cETot,,,, X* be another vertex liftable to Tot,, ., _, X*, and let
K : A'—Tot,, X* be a path from b,, to c,, liftable to a path from b, ,,_,
t0Cpy,—yinTot, ,,_, X Ifm Z0orif m = — 1 with [z, X*, 7, X*] =0
for1<t=r—1,thenV,(a,/J,b)[K]+ V,(b,K,c)=V,(a,JK,c).

VM) Ifmz0or m=—1 with [z, X*, 7, X"]=0 for 1 =¢t=r—1, then
dV.a,J,b)=w(a)J] - w,(b) in Ert2m+r=1(x* p). If a and b lift
to vertices d, bETot,,,,,,, X* with ¢ = r, then V,(a,J, b) lives to
Er+rm+r(X®, b); and if a and b lift to vertices 4, b €ETot X°, then
V.(a,J,b)lives to E";""+"(X*, b).

(vi) Let K:A'—Tot, X* be a path ending at b, with lifting K:A'—
Tot,,,,_, X* ending at b, ,,_,. For an element a €EE*""*" (X", b)
there exists a vertex ¢€E€Tot,,,X°® liftable to Tot, ., _, X* with
Cm+r—1 = K(0) and with V,(c, K, b) = a.

As in 5.2, there is a convenient alternative version of this obstruction. For
vertices a, b ETot X*, let K: A' — Tot, X* be a path from a, to b, with n = 0,
and suppose that 1 =r =<n + 2. Then the rth order obstruction element
Afa,K,b)EE "+ (X, b) is defined by A(a,K,b)=V.(a,K,_, D).
Clearly A,(a, K, b) = 0 if and only if the projection of K to Tot, _, ., X* lifts to
a path from a, . to b, in Tot, ., X*. The element A,(a, K, b) always lifts to
Ertb"+1(X*, b). Moreover, when A, . ((a, K, b))EE " *1(X*, b) is defined, it
is given by [A,(a, K, b)]. We have implicitly used

5.5, The difference cochain D’(K, L). Form =0letK, L:A'—Tot, X*be
paths from a vertex ¢ €Tot,, X° to a vertex bETot,, X* such that K and L
project to the same path J: A' — Tot,, _, X*. The difference cochain D'(K, L)€
Nrn,, . (X™, b) is given by ®([L ~'K]) using the isomorphism

®: n, Fib,,,(X*, b) = Nm,,, . (X", b)
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of 10.2, where the loop L ~!X is homotoped to Fib,,(X*, b) over the canonical
contraction of J~'J. In general by Sections 10 and 11, D'(K,L)E
Nm,, . (X™, b) has the following properties:
(i) D/(K, L) is natural in X* and (K, L).
(i) D'(X, L) =0 if and only if X is path homotopic to L through liftings
of J.
(iii) D(L, M)+ D'(K, L) = D'(K, M) for each path M : A! = Tot,, X* from
a to b lifting J.
(iv) If a, b ETot,, X* respectively lift to vertices g,  ETot,, ., X*, then

O0D'(K,L)=9,[L'K}=—D(a,L,b)L 'K]+ D(a,K,b)

in Nz, . (X™*'b), where D(a, L, b)[L~'K])= D(a, L, b)) when m = 1.
More generally for r = 1 suppose that a, bETot,, X°* and K, L: A'—
Tot,, X* respectively lift to vertices 4,bh€ETot,,,, X* and paths
K,L:A —Tot,,,_, X*fromd,,,,_, t0 b, ,._,, where b is sufficiently
liftable so that Em™7 (X", b) is defined by 2.4, 2.5, or 2.6. Then
D'(K, L) lives to E™™*'(X*, b) and

d[D(K, L)) = [0,IL~'K]]=[—D(a, L, )IL~'K]1 + D(a, K, b)]

in Ertrm+r(x* b), where D(a,L,b)L 'K]=D(a,L,b) when
mzl.
(v) For each element a€N7, . (X™, b), there exists a path K’:A'—
Tot,, X® from a to b lifting J with D/(K’, L) = a.
(vi) Forr = 2 suppose that a, b €Tot,, X*and L : A! — Tot,, X* respectively
lift to vertices 4, 6 €ETot,,,, X* and path L:A'—Tot,,,,_, X* from
Gpsr—1 10 b, 4, _ 1, where b is sufficiently liftable so that E™7*(X®, b)is
defined by 2.4, 2.5, and 2.6. If D/(K, L) lives to E™™*1(X*, b) and if
aENn, . (X™*",b) is an element with d,[D'(K,L)|=[a] in
Ertrmtr(x® p), then K:A!'—Tot, X® lifts to a path K:A'—
Tot,,,,_; X* from d,,,,_, t0 b, ,,_, with

a=98,[L'K]=—D(a,L,b)L"'K]+D(@a,K,b)

in Nm,, (X"*",b), where D(a,L,b)L 'K]=D(a,L,b) when
mzl.
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§6. Connectivity and comparison results

For a fibrant cosimplicial space X*, we now apply our homotopy spectral
sequence and obstruction machinery to derive some connectivity and compar-
ison results for Tot X*.

6.1. Nonemptyness of Tot X*. If X*is pointed, or has a nonempty augmen-
tation, then clearly Tot X* is nonempty. In general by 4.4, Tot X°is the disjoint
union of the Tot X} for a €nny X* = (m, Tot, X*)V, so the connected compo-
nents X C X® may be inspected individually. Moreover, by 14.4, there is a
bijection #'nfX: = (n, Tot, X3)V so m, Tot, X* is nonempty iff 7'zfX? is
nonempty. Various other nonemptyness results follow by obstruction theory.
For instance, for r = 1 if a vertex bE€Tot,_, X* lifts to Tot,,_, X* and if
EFk=1(X*, b) = 0forall k = 2r — 1, then b lifts to Tot X*. Likewise, for r = 2 if
a vertex bE€Tot,_, X* lifts to Tot,,_; X® where [7,X°, 1, X*|=0for 1 =¢ =
2r — 3 and if E¥*='(X*, b) =0 for all k = 2r — 2, then b lifts to Tot X*. On
the other hand, if X*~ Sk, A then Tot, X* is empty for k > m.

6.2. Connectivity of Tot X*. When Tot X* is nonempty we may form
{E.(X", b)} at a vertex b ETot X* and use convergence results of Section 4 or
[8] to study =, (Tot X*,b). Thus, for bETot X, m=0, and r=1, if
Es*+{(X*, b) = 0 whenever s 2 0 and 0 < i < m, then Tot X* is m-connected.

6.3. A comparison theorem. Letf: X*— Y* be a map of fibrant cosimplicial
spaces. It is well-known [8, p. 277] that if f: X* = Y* for each s = 0, then
Tot f: Tot X*=Tot Y*. By 3.3 and 5.2, this conclusion follows using much
weaker hypotheses at the E,-level. Suppose r = 1 and

fe:(m Tot,_, X))V = (m, Tot,_, X,
For each [b]€E(n,Tot,_, X)*~V suppose that f,:E>+ (X", b)—
E**i(Y®, fb) is: (i) mono for i = — 1 and s = 2r — 1; (ii) iso for i =0 and
s Z r; and (iii) iso for i = 1 and s = 0. Then

fy: (m Tot,, X))~V = (7, Tot,, Y)Y  foreachm=r—1,

and
S mi(Tot,, X°, b)¢ V= gz, (Tot,, Y*, fb)¢~D

for each vertex bETot,, 5, _, X* withm=0 and i=1.
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Consequently, {Tot, }: {Tot, X*} — {Tot, Y*} is a weak prohomotopy equi-
valence (see [6, 8.5]) and Tot f: Tot X*=Tot Y".

Alternatively, suppose r = 2 and f,, : (7, Tot, _, X*)* V= (%, Tot,_, X*)*
with [7,X*, 7, X*] =0 for 1 <t <2r — 3. For each [b]E(m, Tot,_, X*)" ="
suppose that f,: E**/(X®, b)—E**/(Y*, fb) is: (i) mono for i = — 1 and
sz2r—2;(i)iso fori=0and s =r —1; and (i1} iso for i = 1 and s = 0.
Then

fy: (my Tot,, X))~V =(n, Tot,, )P  foreachm zr —2,

and
fe: m(Tot,, X°, b)YV =m(Tot,, Y*, fb)r 1

for each vertex bETot,, ., _, X* withm=0 and i=1.

Consequently, Tot /= Tot X* =~ Tot Y* as above. For instance, iff: X*— Y*isa
map of fibrant, termwise simple, cosimplicial spaces such that f,: n°n, X* =~
n°m, Y® is mono for t =5 — 1= 1 and iso for t = s = 0, then Tot f: Tot X* =~
Tot Y*. This instance also follows from

6.4. A simple derived homotopy exact sequence. Let X® be a termwise
simple fibrant cosimplicial space. Then for m = 1 there is an exact sequence
(n, Tot,, X*)™ AR (71, Tot,, | X)W 22, gm+ig xo

where j is the tower map and w;, is the lifting obstruction of 5.2, and there is a
natural left action by the group n™x, X* on the set (n, Tot,, X*)V such that
elements of (n, Tot,, X*)\" are in the same orbit iff they have the same image in
(7, Tot,,_, X*)V. For each vertex b €Tot,,,, X* and element u En™n, X*~
n™r,.(X® b), this action produces an element

u + [b]E(m, Tot,, X*)V = n(Tot,, X*, b))V
which equals the image of u within the derived homotopy exact sequence
«+ = m(Tot,,_ X*, b)V—n,(Tot,,_, X*, b)V
- 1", (X®, b) = n(Tot,, X°, b)Y — ny(Tot,,_, X°, b)

of 3.3. Furthermore, there exists a vertex ¢ €Tot,,,; X°* with u + [b] =[c],
Cm-1=0b,_1, and V,(c, 1, b) = u by 5.4. The ordinary obstruction theoretic
Hopf-Whitney-Eilenberg classification theorem now generalizes to

6.5. A simple classification theorem. Let X® remain a termwise simple
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fibrant cosimplicial space, and for some g = 1 suppose that: z°z,_, X* = 0 for
alls =2; n°n, X°=0 for all s # q; and n*n,, ,X* =0 whenever 0 =5 <¢q — 2.
Then there are natural bijections

7, Tot X* = (n, Tot, X*)V = nm, X*.

§7. A classical homotopy spectral sequence

Before turning to the unstable Adams spectral sequence, we discuss a
classical homotopy spectral sequence and associated obstructions for
unpointed mapping spaces [4], [13]. Our discussion can easily be adapted to
the pointed case.

7.1. The cosimplicial setup. For a space K and fibrant space L, we form the
fibrant cosimplicial space Map*K, L) where Map™(K, L) is a product of
copies of L indexed by the m-simplices of K. As in [8, p. 271],

Tot Map*X, L)=Map(K, L) and {Tot,Map*K, L)} = {Map(Sk,K, L)}.
The connected components (4.4) of Map*(K, L) correspond to members of
[SkoK, L1 = 1’y Map"(K, L) = [n,K, my L]
where [7,K, myL] consists of functions 7, K — mpL, and as in 14.4
[Sk,K, L1V = n'nf* Map*(K, L) = [n$K, nf’L]

where [nf’K, n§’L] consists of the functors nf’K — 7L modulo natural equi-
valences. For a map b : Sk,K — L extendable to Sk, K, n*n,(Map*(K, L), b) is
given by [nK, L] for (s,t)=(0,0) and by the twisted cohomology
H*(K; m,L),, associated with b, : nfK —nf’L fors =0 and ¢t = 1.

7.2. The classical homotopy spectral sequence and obstructions. For a
mapb:K—L, we obtain the classical homotopy spectral sequence
{E(Map*(K, L), b)} from 2.4 with

E3*(Map*(K,L),b)=H'(K;nL);,, fors=z0 and tz=1;

more generally, for amap b : Sk, K — L extendable over Sk, K with m = 1, we
obtain a truncated version of this spectral sequence definedfor 1 =r =m + 1.
Each groupoid map #nf’K — nf°L is induced by a suitable map Sk,K — L. By
5.2, for any map b: Sk, K— L with n = 2, there are obstructions 7,(b)€E
Er*'"(Map*(K, L), b) for 1 =r =(n + 2)/2 which vanish iff b |Sk,_,,.K
extends over Sk,.,K. These generalize the classical obstruction y,(b)€E
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H"*\K;m,L),,. Finally by 5.4, for mapsa,b:K—L and a homotopy
H:A' X Sk,K— L from a | Sk,K to b | Sk,K with s = 0, there are obstructions
A(a,H,bYEE* "+ (Map%K,L),b) for 1 =r=s+2 which vanish iff
H | (A' X Sk, _,, ,K) lifts to a homotopy H : A' X Sk, , K — L from a | Sk, ,K
to b | Sk, . K. These generalize the classical obstruction Ay(a, H,b)E
H YK 4y L)y

7.3. Convergence. Let b: K—L be a fixed map. For each groupoid
map nf’K — nf’K agreeing with b on vertices and for each i = — 1, suppose
that the associated twisted cohomology H*(K; «, ;L) vanishes for all suffi-
ciently large s. Then, by 4.5, {E}*(Map*(K, L), b)} converges completely to
n,_,(Map(K, L), b) for t —s>0 and to the kernel F'n(Map(K, L), b) of
[K, L]—[noK, moL] over b,: mK — moL for t —s =0. This applies, for in-
stance, when K is finite dimensional or L is a Postnikov space.

Next let b: K— L be a map where L is equivalent to a simplicial compact
Hausdorff' space whose underlying simplicial set is fibrant. Then, by 4.8,
{E*(Map*(X, L), b)} converges completely to ,_(Map(K, L), b) fort —s =
0. This applies, for instance, when L is an F,-completion, L =~F,, Y, for
H_ (Y; F,) of finite type [8].

Finally suppose that L is Q-nilpotent with homotopy groups of finite rank.
Then by [15], for each b: K—L and i =1, {m(Map(Sk;K,L),b)} is a
continuous tower of linearly compact HQ-local groups. Thus by 4.3,
{E*(Map*(X, L), b)} converges completely to n,_(Map(K, L), b) fort —s >
0 and [K, L]~ lim,[Sk,K, L].

7.4. The associated homology spectral sequences. By 2.7 there is a Hurew-
icz map from the homotopy spectral sequence of Map®*(X, Y) to the corres-
ponding homology spectral sequence over a commutative ring R. The latter is
Anderson’s spectral sequence ([1], [6, 4.2]) for H (Map(X, Y); R).

§8. Derived functors of derivations over the Steenrod algebra

Before discussing the unstable Adamas spectral sequence for mapping
spaces in Section 9, we develop some algebraic preliminaries.

8.1. Discrete coalgebras over a field k. For a set W, let kW be the coalgebra
consisting of the free k-module on W with comultiplication A: kW —
kW ® kW and counit ¢: kW — k determined by A(w)=w @ w and e(w) =1
for wE W. For a coalgebra C over k, let 7,C be the set of all c €C with
A(c)=c®cand e(c)=1. Then k( ) is left adjoint to 7,( ), with adjunction
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bijections W = mokW and injections km,C C Cby, e.g., [22, p. 57]. A coalgebra
C is called discrete when kn,C = C. The category of discrete coalgebras is
clearly equivalent to the category of sets. Each coalgebra C'is the direct limit of
its finite dimensional subcoalgebras by, e.g. [22, p. 47]. Thus a commutative
coalgebra C over the prime field k = F, has a natural Frobenius endomor-
phism &¢: C — C dual to the pth power endomorphism. A commutative coal-
gebra C over F, is discrete if and only if =1: C— C, since a finite dimen-
sional commutative algebra 4 over F,has( ¥ = 1:4 — A4 if and only if there
is an algebra isomorphism 4 = F, X - - - X F,.

8.2. The category CA. We let CA denote the category of unstable graded
commutative coalgebras over the mod-p Steenrod algebra for a fixed prime p,
exactly as in [7, 11.3] except that our present objects B € CA need not be
connected but must have B, = 0 for n <0 and B, discrete. Thus H,(Y; F,)€E
CA for any space Y. Each object BE€ CA decomposes canonically as a direct
sum B = @, B, of connected subobjects B, C B for b €n,B,, where B, is the
image of the idempotent ¢, : B — B given by the composition

B B®B“®L F,®B=B

with u, projecting to the summand F, = F,b of By = F,n,B,. Moreover, the
maps in CA clearly carry components to components. The image of a map in
CA is also in CA, and the category CA has arbitrary small colimits and limits.
More specifically, a colimit (e.g. coproduct, coequalizer, etc.) in CA is the
colimit of the underlying graded vector spaces with induced CA-structure; a
finite product is the tensor product, while an infinite product may be con-
structed using cofree resolutions (8.3); and an equalizer of maps 8, ¢9: B—C
in CA is the largest subobject E C B with 6| E =¢|E, which is given
by the image of @,E,— B using all subobjects E, CB with 0 | E, =

7] | E,. In general, this equalizer E C B map be smaller than the graded
vector space ker(d —¢) C B; but when &b,)=¢(b,) implies b, =b, for
b, b,€B, then E =ker(6 — ¢), because ker(6 — ¢)@ker(f — ¢) will equal
ker(0Q 0 — ¢ ® ¢). Thus for a cosimplicial object Y* over CA, the equalizer of
d® d': Y’—Y'in CA is n°Y = ker(d® — d").

8.3. Derived functors on CA. Let Vect be the category of graded F,-vector
spaces W with W, =0 for n <0. Extending [7, 11.4], the forgetful functor
J: CA—Vect has a right adjoint G : Vect— CA with
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GW)= H*( II K(w,, n), F,,) .
n=0

An object BECA is called cofree if each connected component B, C B is
isomorphic to some value of G. Equivalently, an object B € CA is cofree if and
only if B is a retract of some G(W). A cosimplicial cofree resolution of B € CA
consists of an augmented cosimplicial object B — Y* with Y* cofree for s = 0,
with B — n°Y* iso, and with z°Y* = 0 for s = 1. One such resolution B — G*B
with (G°B)* = G°**'B is obtained by iterating the adjunction triple G =
GJ: CA—CA. Now as in [5, App.], each function T: CA— M to an abelian
category M has right derived functors R*T: CA— M for s = 0 given by

(R°TYB)=n'T(G*B)=n*T(Y*) for BECA

and for any cosimplicial cofree resolution B — Y*. More generally, on the
category CA\ B of objects under some B €CA, a functor T: CA\ B — M has
right derived functors R°T : CA\ B — M for s = 0 defined as above by viewing
B — G*Band B — Y" as cosimplicial objects over CA \ B. This is justified by [5,
App.] using the adjoint functors J: CA\B< Vect\JB:G.

REMARK 8.4. For a more detailed study of such derived functors, one may
use Quillen’s machinery [20], {21]. By the dual of Theorem 4(*) in {20, II §4],
there is a closed model category structure on the category VCA of cosimplicial
objects over CA, where a map ¢: Y"—Z* is: a weak equivalence when
o n*Y* = n*Z* a cofibration when Nf: NY* — NZ* is monic for s > 0; and a
fibration when f has the right lifting property for all weak equivalence-
cofibrations. Now the above derived functors R*T are constructed using a weak
equivalence-cofibration B — Y* with Y* fibrant.

8.5. Derivations in CA. Asin [19, Corr.], let V denote the category of right
modules M over the mod-p Steenrod algebra with M, = 0 for n = 0 and with
the modified unstable condition xP' =0 for |x| <2pt when p odd and
xSq' =0 for [ x| =<2t when p = 2. For BECA, let VB denote the category of
B-comodules M €V with A,,: M — B ® M respecting the right Steenrod ac-
tion. Note that VB is an abelian category with enough injectives of the form
B®FW for WEVect where F: Vect—V is right adjoint to the forgetful
functor. A derivation from M €VBto B € CA is a Steenrod module homomor-
phism D : M — Bsuch that AD : M — B ® Bequals (1 ®D + 7o(D @ 1))A,,. Let
Derca (M, B) denote the F,-module of such derivations. Each M EVB
determines an object (M)=B®M in CA under B with comultiplication
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acting on M by Ay +1Ay: M —>(BQM)D (M QB), and this produces a
functor 1: VB— CA\B. Foramap ¢: B—C in CA and M €EVB, there is a
natural isomorphism

Homg,\ (1M, C) = Derc, (M, C)

where M is given the C-comodule structure induced by ¢.

8.6. Another approach to derivations in CA. For BECA, VB is in fact
equivalent to the category of abelian cogroup objects in CA \ B, and there is an
abelianization functor 4bg: CA\ B — VB right adjoint to :: VB —CA\B as
explained below. Thus there is a natural isomorphism

Homyz(M, AbyC) = Derca (M, C)

for f:B—C in CA and MEVB. The functor 4by: CA\B— VB carries
f: B— C 1o the object Ab; C in VB given by the kernel of the map

BO®A—-(BQfACHABC)—(BATNBRORCNARC)

from B ® Cto B ® C ® Cin the category UB of unstable B-comodules over the
Steenrod algebra. This follows since the composition

Aby(C)CBRC-25 F,QC=C

is the universal example of a derivation to CECA from a VB object with
VC-structure induced by ¢ : B — C. As a B-comodule, Ab;C is independent of
Steenrod actions. Moreover,

AbyC = BO Ab:C

where O is the cotensor product, and Ab-C is a coalgebraic analogue of
the “Kahler module of differentials.” Finally, Ab; C is easily determined in
special cases: (i) if B=F,, then AbyCEV consists of the primitives in
the component of C at B; and (ii) if C = G(W) for some W& Vect, then
AbyC ~BQFWin VB.

8.7. Derived functors of derivations in CA. For a map¢: B— C in CA,
sz 0, and ¢ = 1, we form the F-module

Der, (B, C), = n° Dercy(H,S'® B, G*C),
= 7° Homea\s(H, S' ® B, G*C),

where H . and H, denote F,-homology and where the optional subscript ¢
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indicates the dependence of structures on ¢: B — C. By 8.3, we can use an
arbitrary cosimplicial cofree resolution C — Y™ in place of C — G*C. Since
C — Y? is the equalizer of d°, d': Y°— Y' in CA, we have

Der% (B, C), = Derca(H,5' ® B, C),
= HomCA\E(H*St ®B, C)¢
fort = 1.

8.8. A spectral sequence for Der& (B, C),, For any factorization of
¢: B— Cbymaps B— Kand K — Cin CA, there is a convergent cohomologi-
cal spectral sequence

E3* = Ext{y(H,S' ® B, RAbC)= Der &74(B, C),
for ¢ = 1, constructed using the isomorphism
Dercs(H,S' @ B, G°C),~ Homyx(H,S' ® B, Aby G*C).

The K-comodule R4b; Cis independent of Steenrod actions, and the results of
[3] and [21] can be applied. When ¢ : B — C is trivial and K = F,, R4b;C
becomes a derived functor of primitives, and we recover the spectral sequence
of Miller [19, 2.5].

8.9. On Der (B, C), for a Hopf algebra C. Suppose that C is a group
object in CA; that is, C €CA is equipped with a multiplication map CQ C —
C, aunit map F, — C, and an antipode map C — Cin CA satisfying the group
conditions. For example, C might be H, G for a topological group G or U(M)
for an unstable right-module M over the Steenrod algebra. Then for any object
B and maps 8, ¢ : B— C in CA, there is a canonical isomorphism

Der¢i (B, C)s=~ Deri (B, C),

for s =0 and ¢ = 1; and thus a given ¢ : B — C may be replaced by a trivial
map. This follows using the cosimplicial pairing G°C ® G*C — G°*C induced
by the multiplication map C ® C — C and by the natural pairing

GDQ®GE—~G(DR®E) forD,EECA.

Finally, in the Massey-Peterson case of a map ¢: B— UM in CA for an
unstable right-module M over the Steenrod algebra, we have

Der, (B, UM),~ Ext{;(H,S' ® B, M)
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as in [7, 13.4] for s =0 and ¢ = 1, where U is the category of unstable
right-modules over the Steenrod algebra.

We refer the reader to [16, §6] for another approach to Der{ (B, C) in an
important special case. Finally we briefly discuss

8.10. Homological Lannes functors and their derived functors. For BECA
the functor (— )@ B: CA— CA has a right adjoint Mapc, (B, —): CA—CA
constructed as follows: for W € Vect,

Mapca (B, GW) = G Mapy..(B, W)

where Mapy,(B, W) is {Homy(Z'B, W)};2o; and for any CECA,
Mapc (B, C) is the equalizer in CA of

d® d' : Mapc, (B, GC)—Mapc, (B, GGC).

The resulting Lannes functor Mapc, (B, C), whose cohomological version is in
[16], turns CA into a cartesian closed category [17, p. 95]. There are right
derived functors

Mapg, (B, C) = n* Mapc, (B, G°C),

for s = 0 with Map2; (B, C) = Mapc, (B, C). Moreover, foramap ¢: B— Cin
CA, s =0, and ¢ = 1, there is a natural homomorphism

h:Dergi (B, C)s— Map, (B, C)
induced by the cosimplicial homomorphism
Homey\s(H,S' ® B, G°C), = Homca\g,(H,S*, Mapca (B, G*°C),)
C Mapca(B, G*C),

§9. An unstable Adams spectral sequence

We now explain how the author and Kan’s unstable Adams spectral
sequence ([7] and [8]) applies to unpointed mapping spaces, and we briefly
discuss the associated homology spectral sequence. This account can easily be
adapted to the pointed case. As in Section 8, we let CA be the category of
unstable graded commutative coalgebras over the mod-p Steenrod algebra for
a fixed prime p, and let H, L = H_(L; F,).

A mod-p GEM space is a space whose components are weakly equivalent to
products IT;°_; K(W,, n) for F,-modules W,.
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LEMMA 9.1. There are natural isomorphisms [K, L}~ Home,(H K, H,L)
and

n(Map(K, L), f) =~ Homea\y x(H,S'®H K, H,L),,
~ Dercs(H,S'®H K, H,L),
for any space K, fibrant mod-p GEM space L, map f:K—L,andt = 1,

Proof. Using components, we may assume that K and L are connected.
Then the first result is well-known and the second follows since
n(Map(K, L), ) acts trivially on =z, Fib;, where Fib, is the fiber of
Map(§’ X K, L)—Map(K, L) over f, because L is equivalent to a simplicial
F,module and K is a retract of ' X K.

9.2. The cosimplicial setup. For a space L, let L — F} L be the cosimplicial
Fresolution given by [8, p. 20). Then H, L — H, Fy L is a cosimplicial cofree
resolution (8.3) of H,L in CA. Moreover, the cosimplicial space F3L is
grouplike [8, p. 276), and thus fibrant, with total space Tot Fy L = F, L giving
the F,-completion of L, and with tower {Tot,F3L}={F,L} as in
[8, pp. 20-21]. Next for a space K, there is an augmented fibrant cosimplicial
space Map(K, L)—Map(K, F; L) with total space

Tot Map(K, F3 L) = Map(X, F,..L)
and with tower
{Tot, Map(K, F;L)} = {(Map(K, F,,L)}.

The connected components (4.4) of Map(K, F;L) correspond to members of
7’y Map(K, F3L) =~ n° Home,(H K, H F;L) =~ Homc,(H K, H,L)

and, for each map¢: H K—H,L in CA, the connected component
Map(K, F;L), is fibrant with

n'n, Map(K, FL),~ Derg (H, K, H,L),
fors=0and¢=1by?9.1 and 8.7.

9.3. The unstable Adams spectral sequence and obstructions. Each
map b: K—F,,L with 1 =m = o determines a map b, : H K—H,L in CA
corresponding to [b]E€ 7’7, Map(K, F; L) which is given explicitly by the
composite of the natural homomorphisms

H ,(proj) H (incl)

b,
H,K— H,F,,L — HJF,— H(F,®L)— H,L.
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When L is F,good (8, p. 24], H,L =H,F,. L and a mapb: K—F, L
immediately determines this b, : H,K—H_L. In general, foramap b: K —
F, L we obtain our unstable Adams spectral sequence

{E*(K, L, b)} = {E*(Map(K, FL), b)}
from 2.5 with
E3YK,L,by=Derg(H K,H,L),, fors=0, t=1
=Homc,(H K, H,L) fors=0, t=0

by 8.7 and 9.1. More generally, for a map b: K — F,,.L liftable to (F,),, +,L
with m = 0, we obtain a truncated version of this spectral sequence defined for
l=r=m+2. Foragiven map ¢: H K— H_L in CA, there always exists a
map b: K—F, L with b,=¢ by 5.1, and to realize ¢ we seck a lifting
b:K—F,,L.ByS5.2, forany map b: K— F,,L with n = 1, there are obstruc-
tions y,(b)EE!*'""(K, L, b) for 1 =r = (n + 3)/2 which vanish iff the projec-
tion of b to (F,),—,+ L lifts to (F,),,L. In particular, there is an obstruction
7Ab)EDer¢t "(H K, H,L),,. Finally by 5.4, for maps a,b: K—F,,Landa
homotopy H: A' X K — F, L from a, to b, with s Z 0, there are obstructions

Aa,H, b)EEST "t (K,L,b) forl=r=s+2

which vanish iff the projection of 4 to (F,),_,+ L lifts to a homotopy from
a,.; to b,,,. In particular, there is an obstruction Ay(a, H,bh)E
Der{i**'(H K, H, L)y,

9.4. Convergence. For a map b: K — F, L we have obtained an unstable
Adams spectral sequence {E;*(K, L, b)} abutting to 7, _ (Map(K, F,,L), b). If
H,L is of finite type, then this spectral sequence converges completely to
m,-(Map(K, F,,L),b) for each t—s=0, and thus E%, (K,L,b)=
EsK,L,b)foreacht=s=0and

n(Map(K, F,,L), b)=lim n,(Map(K, F L), b).

for each iz 0. This follows by 4.5 since {F,L}, and consequently
{Map(K, F,L)}, is weakly equivalent to a continuous tower of simplicial
compact Hausdorff spaces which are fibrant as simplicial sets, because the
spaces F,,L have finite homotopy. ,

To construct the corresponding homology spectral sequence, using the
homological Lannes functors (8.10), we need
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LEMMA 9.5. There is a natural isomorphism
H,Map(K, L)~ Mapca(H K, H,L)
in CA for any space K and fibrant mod-p GEM space L.

ProOOF. By 9.1 the natural map from the cofree object H, Map(K, L) to the
cofree object Mapc,(H, K, H, L) in CA induces a bijection

nyH , Map(K, L) = ny Mapca(H K, H L)~ Homc,(H, K, H_L)
with 7, as in 8.1 and an isomorphism
Homg,\s(H,S', H Map(K, L)), = Home,\z,(H,S*, Mapc, (H K, H,L)),

for each ¢: H K—H,L in CA and ¢=1. Thus the natural map is an
isomorphism.

9.6. The associated homology spectral sequence. Let
{E}'(K, L; F,)} = {E}*(Map(K, F}L); F,)}

be the homology spectral sequence of [6] abutting to H,(Map(K, L); F,) and
having
E3{K, L; F,) =~Mapg (H K, H L)

by 8.10 and 9.5. For a map b: K — F, L there is a Hurewicz map of spectral
sequences
h:{E}(K, L, b)}—{E}(K, L; F,)}

by 2.7, abutting to

h:=m,_,Map(K, L), b)—H,_(Map(X, L); F,)
and given by the homomorphism (8.10)

h:Dergi(H, K, H,L),, ~Mapgi(H K, H,L)
whenr=2,5=0, and ¢ = 1. We show convergence in the standard case.

ProposITION 9.7. IfL is an n-connected fibrant space withn = 1 and K is a
space of dimension =n, then {E}*(K,L;F,)} converges strongly to
H,Map(K, L)~ H,Map(K, F,,L).

ProoF. The natural map

@ : {H; Map(K, F,,L)}—~ {H.T,(F, ®Map(K, F;L))}
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is a pro-isomorphism by [6, 3.2] since n°n, Map(K, F;L)=0 for t <s as in
[8, p. 31}, or alternatively by [6, 3.4] since Mapg, (H K, H,L)=0fort <s.
Thus by [6, 2.3] it will suffice to show that

(H;Map(K, L)}~ (H, Map(K, F,.,L)} -+ {(H; Map(K, F,,L)}

are pro-isomorphisms for each i. When K is a point, this follows by [8, pp. 88,
186]. When K is a (possibly infinite) discrete space, it follows as in [6, 9.3] using
the n-connectedness of the spaces F,;L for 0 = 5 = o0 and using the elementary
criteria: (i) for a tower {4, — B, —~ C,} of fiberings with each B, and C;
1-connected, {H;B,}— {H;C,} is a pro-isomorphism for all i iff {H;4,} is
pro-trivial for all i; and (ii) for a tower {4,} of simple spaces, {H;4,} is
pro-trivial for all i iff {Z/p @ m;4,} and {Tor(Z/p, m;A,)} are pro-trivial for all
i. When K is a disjoint union II, A™ of copies of A™ for m = 0, it follows from
the preceding case. In general, it follows by induction on the dimension of K
using Eilenberg-Moore spectral sequences for fibre squares of mapping spaces

out of
A" —— Sk, _ K
c ‘c

oA~ SknK

By Proposition 9.8 below, for r =2 and arbitrary spaces K and L,
{E*(K, L; F,)} is the direct sum of the F,-homology spectral sequences of the
cosimplicial components Map(K, F;L),C Map(K,F;L) for ¢€
Homg,(H K, H L), and the convergence results of [6] may be applied
componentwise.

PrOPOSITION 9.8. For a cosimplicial space X* and abelian group A, the
inclusions of cosimplicial components X3 C X® for a € n’ry X® induce an iso-
morphism

{®. EX(XZ; 4)) = (E(X% 4)}
Jorrz=2.

This follows from Lemma 9.9 below using J* = 7, X*. A coefficient system M
on a cosimplicial set J® consists of a functor M to abelian groups from the
category whose objects are the simplices of J* and whose morphisms o : x —~y
are the cosimplicial operators a with ax = y. The homomorphism M(a) is
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written as a : M, — M,. We let H*(J*; M) = n*C(J*, M) where C(J* M) is the
cosimplicial abelian group formed by summing the coefficient groups in each
dimension. Using the restriction of M to the constant cosimplicial set J7 on
(vEJ°| d°% = d'v}, we have

LEMMA 9.9. The inclusion J; C J® induces an isomorphism H*(J3; M)~
H*(J* M) for any coefficient system M on a cosimplicial set J°.

Proor. It suffices to show H*(J* M) = 0 where M is the coefficient system
with M, =0 for x€J? and M, = M, otherwise. For a simplex x €J* and
abelian group 4, let L(A, x) denote the coefficient system on J* given by
L(A, x), = @, d’4 where d’ ranges over the cofacial operators with d'x = y and
where d’4 =A. Then H*(J% L(4,X))=0 since the normalization of
C(J*% L(A, x)) is zero except for 6 : A = A in dimension | x| and | x| + 1. For
any coefficient system P on J®, let

NP, = () ker(s': P, — Py).

Then a homomorphism P — P’ is monic iff NP, — NP/ is monic for all x EJ°.
There is a natural homomorphism

@ L(NM,,x)—~M
x€f

which is monic by the above criterion since NM, =0 for xE€J® and
NL(NM,, x), =0 for y # x with x¢&J;. The cokernel M’ of this monomor-
phism has H*(J; M) =~ H*(J; M’), and the lowest nonvanishing group (if any)
in M’ is higher than in M. Thus, by iteration, H*(J; M) = 0.

§10. The E-level constructions

We devote the rest of this paper to constructions needed for the results in
Sections 2-5, and we start by establishing E-level properties of the tower
{Tot,, X"} for a fibrant cosimplicial space X*. Our results here extend those of
[8; Ch. X].

10.1. A natural fiber square. Let M™~'X"® be the matching space given by
all

x% ..., x" hex™Ix ... x X!

with s’x/ =s/"x for 0= i<j=m —1; let g,,: X" = M™"'X* be the fib-



86 A. K. BOUSFIELD Isr. J. Math.
ration with a,,(x) = (s°x, . . ., s™"'x); and let y,, : A" C A™. Then there is a
natural fiber square

Tot,, X®* ——— Map(A™, X™)
Tm

Totm_lX'—"ﬂm—’ Map(ﬂm’ am)

with the canonical maps. Note that 7,, depends only on the codegeneracies
of X*. Clearly, Map(A™, X™) contains X™ as a strong deformation retract
via the standard homotopy from the constant map (d')"(s°)™: A™ —A™ to
1:A"—A™. For i,m =0 and a vertex b&€Tot, X*, there are associated
isomorphisms

; Fib,,(X*, b) = =; Fib(z,,/b™) = =; Fib(z,,/(d")"b,)

where Fib,,(X*, b) denotes the fiber of Tot,, X*— Tot,, _, X*at band Fib(z,,/x)
denotes the fiber of 7,, at a vertex x. For any vertex v€ X™ C Map(A™, X™), e.g.
v=(d")"b,, there is a canonical isomorphism

Fib(z,,/v) =~ Map, (S™, Fib(g,,/v))

where Fib(o,,/v) 1s the fibre of o,,: X™ —M™"'X at v, and this induces an
isomorphism =; Fib(t,,/v) = =, , ., Fib(0,,/v) using the standard orientation of
S* AS™. By [6, §5] there is a canonical isomorphism

7; + m Fib(0,,/V) = N7; , ,(X™, V) whenm=0 or vEX",

where X7 is the union of the connected components of X® (see 4.4). The above
isomorphisms compose to give the following ®.

ProPOSITION 10.2. For i,m =0 and a vertex b&€Tot, X*, there is a
natural isomorphism

®: 7, Fib,,(X*, b) = N7, . .,(X™, b)
of groups when i = 1 and of pointed sets when i = 0.

In the fiber square 10.1, we next determine 7, (Map(4,,, 6,,), v) for m = 1
and v€ X?*. The map 7,, induces

Tyt L(X™, V)= m;(Map(h,, G), V)

and, for the pointed space (A’", 0), the inclusion
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8, : Map, (3", Fib(a,,, v)) C Map(in, G,
induces
Nnm +i—l(Xm’ 1)) =M +i-1 Flb(am/v)
0,.,
~ n; Map, (A", Fib(o,,/v)) — m,(Map(,,, 6,,), )

using the standard orientation of S’ AA™. The right action of 7,(X™, v) on
Nn (X™,v) C m, (X", v) gives a semidirect product 7,(X™, v) X4 N, (X™, v),
which is defined as the set #,(X™,v) X N=m,(X™,v) with multiplication
(g,a)-(h,b)=(gh,ah + D).

PROPOSITION 10.3. Form = 1 andvE X™, there are natural isomorphisms
T Oy : T(X™, V) Xy N1, (X™, V) = ,(Map(u,, 0,,), V),
T + O X, DD Ny (X", ) 7,(MaD(to, G), 0,
Jor i = 2. The composite of these isomorphisms with
0, : m;(Map(u,,, 0,), v) = m; _; Fib(z,,/v) = N7, ., (X", 1)
carries each element (a, b) to (1)'~'b for i = 1.

ProofF. The results on z;(Map(u,,, 6,), v) follow since 7, restricts to a
cross-section of the fibration &, : Map(u,,, g,,) = X™ with ¢,(f)= f(0) for
0€A™ and since 6,, makes Map, (A", Fib(c,./v)) a homotopy fiber of ¢,,. The
result on d,, follows using the map of fiber sequences

Map, (™, Fib(0,,/v)) — Map, (A™, Fib(g,,/v)) ~ Map, (A", Fib(a,,/v))
| | !
Map,(S™, Fib(g,/v)) —  MapA™, X™) —  Map(u,, o,)

Using the operator J of 2.2, we have

PrOPOSITION 10.4. For i,m =1 and a vertex bETot,, X°, the fibration
composite

P
#; Fib,, _ (X®, b) — m(Tot,, -, X, b) —— m;_, Fib, (X", b)

corresponds to (— 1)) "6 : Nm; , py_ (X", b)— Nm; ., _(X™, D).

ProoF. Taking a fibration mapping cone of b : Sk,,,A — X°, we may assume by
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naturality that X* is pointed and that b € Tot,, X* is at the basepoint. The result
now follows using 10.3 since the composite of canonical maps

Fib,,_; X*—~Tot,,_; X*—Map(in, 0,,) =~ Map(A~, X™)

equals the composite

Map, (S™ "', Fib(c,,)) = Map,(S™~'v - - - v.§™~1, X™)—Map(3™, X™)

of maps induces by 4': Fib(s,,_;)— X™ for 0 =i <m and by the skeletal
quotient map A" — S™~1v ... v S™1,

By the naturality of ® in b, the fibration right action of #,(Tot,, X*, b) on
n; Fib,,(X*, b) = Nm; . .(X™, b) agrees with the fundamental action (3.2). For
i = 0 we have more generally

ProvrosiTiON 10.5. For a vertex bETot,, X* with m = 1, the fibration
boundary

@3, : m(Tot,,_, X*, b)— 1, Fib,,(X*, b) = Nm,,(X™, b)

is a crossed-homomorphism with respect to the fundamental action of
n(Tot,_, X*, b) on Nm,(X™, b), and the associated crossed-homomorphism
action (2.2) agrees with the fibration action.

ProrosITION 10.5. For a vertex bETot,, X® with m Z 1, the fibration
boundary

@3, : m,(Tot,,_, X*, b)— 1, Fib,,(X*, b) =~ Nm,,(X™, b)

is a crossed-homomorphism with respect to the fundamental action of
n(Tot,,_, X*, b) on Nm,(X™, b), and the associated crossed-homomorphism
action (2.2) agrees with the fibration action.

Proor. By 10.1-10.3, ®4d, is the composite of the homomorphism
Bme: m(Tot,_y X°, b)— ny(X™, b) X, Nm,,(X™, b)

with the projection function to N, (X™,b), and thus ®d, is a crossed-
homomorphism. The fibration action of z,(Tot,, _, X*, b) is determined via the
fibration 7,,.

For m = 1 consider the commutative triangle



Vol. 66, 1989 HOMOTOPY SPECTRAL SEQUENCES 89

Bre
) Tot,,, -1 X——m, Map(”m’ am)
¢ %m
Nrfee | xm

using B, from 10.1 and the canonical maps to N [A™, X™ ). Which is here
identified with Nz™™ , X™ via the reverse orientation (5.1) of A™. The proof of
10.3 shows

PROPOSITION 10.6. IfX? = X*and m = 1, then there is a natural bijection
O o MaP(ln, 0,) = NS X,
Our next result leads to the obstruction cocycle of 5.1.

ProrosITION 10.7. For m = 1, a vertex a€Tot,,_, X* lifts to Tot,, X* if
and only if a™: &A™ — X™ is nullhomotopic.

ProoF. Using 4.4 we may assume that X7 = X*. Then 10.1 and 10.6 show
that [a]) € n, Tot,,_, X" lifts to m, Tot,, X* iff the element ¢[a] = [a™] is trivial
in Nrmfe | X™.

Finally we consider

10.8. Hurewicz maps. The R-homology spectral sequence of X* is con-
structed in [6] by using the total chain complex T(R ® X*) with

T(-R®X.)n = H NmNm+n(R®X.)a

mz0
Or=0+(—D"""0:TRAX"), - T(RAOX),_\,

where N*N (R ® X*) is the normalized double complex with 8 = Z;( — 1)'d;
and d = Z,( — 1)d’. This is filtered by the subcomplexes F"T(R & X*) with

F'TR®X), = [l NN+ (ROX)

kzm
and there is an associated tower of complexes
T,ROX)=T(RIOXY)F"*'T(RQOX")
producing the homology spectral sequence with E;-terms
H(F"T(RQX*)/F"*'T(R ® X*)) = NH, , ,(X™; R).

The natural chain map
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N, (R®Tot,, X*) C N (Tot,,(R ® X)) 2 T (ROX)
of [6, 2.2] induces a map
¢y Hy(Tot,, X, R)—~H,T,(RQX").
Using the map £ of 2.7 we obtain a commutative ladder of exact sequences
.« —m,(Tot,,_, X°, b)— Nm;  ,(X™, b)— n(Tot, X*, b)— - - -
lmh lh l¢.h
coe>H; (T, (R®X)—>NH,;, . (X";R)-HT, (RAX)—>---

terminating with n(Tot,,_, X*, b) and H,T,,_ (R ® X*). For vertices a, b€
Tot,, X* with a,,_, = b,,_,ETot,,_, X*, the obstruction cocycle and difference
cochain of 5.1 and 5.3 satisfy

he(b) = 3r,[¢b)ENH,,(X™*; R),
hD(a, b) =[¢pa — ¢b]ENH,(X™; R).

Moreover, the diagram

7, Tot,,_; X*—— Nrfre X
31"
HyT,,_ (R ® Xe) — NH,,_(Xm; R)

commutes where, for any space Y, e: 7Y — Hy(Y; R)isdefined by e[ y] = [¥].

§11. Construction of homotopy differentials: Part I
For a fibrant cosimplicial space X®, we shall construct relations (see 2.3)
dr : qu(Xma b)_‘qu-H—l(Xm-H’ b),

called differentials, which will induce the required spectral sequence differen-
tials. We assume g = m here and postpone the case g << m to Section 12. Using
the isomorphism ® of 10.2 and the obstruction ¢( )and D( , )of5.1 and
5.3, we first specify:

11.1. Ordinary differentials. For r=1, ¢>m =0, and a vertex b€E
Tot,, ., X*, the ordinary differential
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dr:qu(Xm’ b)_‘qu-H—l(Xm-H’ b)

is defined as the composite relation of
Nr(X™, b) = 7,_ Fibu(X®, b)) — ,_(Tot,, X°, b).

3, i ®
— nq—m(TOtm+r—l X.’ b) - nq~m—1 Flbm+r(X.’ b) = q+r-—l(Xm+ra b),
For r,m = 1 and a vertex b €Tot,,,,_, X°, the ordinary differential
dr:Nﬂm(me b)—-‘Nﬂm+,-‘(Xm+’, b)

is defined by letting d,(6) = ¢ iff there exists a vertex a €Tot,, ,,_, X* such that
an_=b,_\,D(a,,b,)=06,and c(a) — c(b) = ¢. When X" is pointed and b is
at the basepoint, the ordinary differentials will be called pointed differentials.

LEMMA 11.2. Suppose that the ordinary differential d, is defined on
Nm(X™, q), and let f: X*— Y* be a map to a fibrant cosimplicial space Y* such
that f,: Nn(X*, b)=~ Nn(Y*, fb) form sk =m+r,qsj=q+r—1,and
Jj —k Z — 1. Then the ordinary differentials

dr . qu(Xm’ b)-‘qu+r—l(Xm+r7 b),
dr: qu(ym’ fb)_‘qu+r-l(Ym+" fb)
correspond under f,.

ProoF. For the case g=m =1, let F,X* be the fibre of Tot, X*—
Tot,,_, X* over b€ETot,,_,; X*. Then by induction on k, f,: n,(F, X* b)=
n(F.Y", fi) for each vertex vEF, X*, m<k=m+r—1and 0=t=m+
r — 1 — k. The result follows since d, is the composite of

N, (X™, b) & 1o(F, X*, b) — m(F™ "' X*, b)—> Nty 1, _(X™*", b)
with Y{a] = c(a) — c(b). The result for ¢ > m = 0 follows similarly.

11.3. General differentials. These are relations d,: Nn,(X™, b)—
Nmy,,—(X™*', b) which will be defined for r,g =1 and ¢ = m = 0, where
b€ETot, X* is a vertex such that the Whitehead products between 7, (X™*’, b)
and the image of b,:#n(SKA™Y",0)—>n,(X™*",b) are trivial in
T, +,—1(X™*', b). This condition holds automatically when b lifts to Tot, ., X*
or when X™*’ has trivial Whitehead products or when m = 0. First take the
pull-back
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r—-x

J,,

SkA*—2 P,_ X*

of cosimplicial spaces where P,_, X* the (¢ — 1)st Postinikov section [18, p. 32]
of X*, and regard the obvious cross-section b : Sk,A*— X* as an inclusion. Then
the cosimplicial maps u : X*— X* and j : X*— (X/Sk,A)" induce isomorphisms

n(X*, b) = #,(X*, b) = n,(X/Sk,A)*
forg<t=gq+r—1and k =m +r, where #,(X*, b) denotes the kernel of
v, : m(X*, b)— n(Sk,A*, 0). Using the associated isomorphisms Nz, (X*, b) =
Nn(X/Sk,A)¢ for g<t=<q+r—1 and k=m+r, we let the general
differential

dr : qu(Xm’ b)_‘Nn4+r—l(Xm+r, b)

correspond to the pointed differential
d,: Nn(X/Sk,A)™ — Nn, ., (X/Sk,A)™ "
given by 11.1 after making (X/Sk,A)* fibrant.
11.4. Improved general differentials. These are relations
d,: Nm(X™,b)— Nny, (X", b)

which will be defined for r,g=1 and g =m =0 where bETot,_, X" is a
vertex liftable to Tot, X* and such that

[nr(Xm-H” b)’ 7tq(Xm.‘.” b)] = 0 m nr+q-—l(Xm+'9 b)'

These d, are given by the corresponding general differentials of 11.3 using an
arbitrary lifting of b to Tot, X*. Two liftings b’, b” €Tot, X* give the same
relation by a straightforward argument using the map
bubd”:SkA I SkA*—P,_ X°
Sky 18"
in place of b: Sk,A*—P,_,X"in 11.3.

An ordinary d,: Nz, (X™, b)— Nn,,,_(X™*", b) may be compared with the
associated general 4, on Nx,(X™, b) when the latter is also defined, i.e. when
(g, m)#(1,1) or when (g, m)=(1, 1) with =,(X"*!, b) acting trivially on
c(b)ENm, (X!, b) (as it automatically does when b lifts to Tot, ., X*).
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THEOREM 11.5. An ordinary differential
dr : qu(Xm’ b)ﬂqu+r—l(Xm+” b)
equals the associated general differential when the latter is defined.

Proor. First suppose that ¢ > m and b E€Tot,,,, X°. Letting X’® be the
pullback of b: Sk, ,,A*— P,_,X*« X* and using the cosimplicial maps

X*—X'*—(X'ISky, 1, A) ~(X/Sk,A)

with objects made fibrant, Lemma 11.2 shows that the ordinary differentials d,
agree on the successive groups

Nr(X™, by~ N (X'™, b) = Nu(XISkn 1, A" = N7, (X/Sk,A)™.

The result now follows since the ordinary d, on Nn (X/Sk,A)™ agrees by
definition with the general d, or Nm,(X®, b). Next suppose that ¢ =m and
b€ETot,, ., X*. It suffices to show that the ordinary d, on Nz, (X™,b)
corresponds to the pointed d, on N, (X’Sk,,.,_,A)™ where X’* is now the
pullback of

b:Sky,,_A*—P,_ X*<—X"

For an ordinary d,0=¢ determined by an element a €Tot,,,,_, X* with
a,_, = b,_,, there is a corresponding pointed differential constructed using
the cross-section a : Sk, ,,_;A*— X’*. The converse follows by naturality after
first applying Lemma 11.2 to the cosimplicial map

X/._' (X,/Skm +r— lA). X Skm +r— lA.
with objects made fibrant.

COROLLARY 11.6. Leta,a’,bETot,,,,_, X* be vertices such that a,,_, =
a,_, inTot, _, X°*. Suppose that 1 =r <manda, =b,,orthat 1 <r <mand
a,_y=b,_, with [n,(X™*",a), n,(X"*",a)]=0. Then there exists a vertex
b’'€Tot,, ., X*suchthatb,,_,=b,,_, inTot,,_, X°, D(b.,, b,) = D(al,, an),
and c(b’) — ¢(b) = c(a’) — c(a).

Since general differentials are defined in terms of pointed differentials, the
following properties are €asily verified by reducing to the pointed case.

11.7. Formula for d,. A general d, : Nn(X™, b)— Nm (X™*!, b) equals the
function (— 1)"™~'§ of 2.2 and 10.4.

11.8. Naturality properties. A general d,: Nn (X", b)— Nn,,,_(X™*", b)
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is natural in X* and b €Tot, X* (or b ETot,_, X" in the improved case 11.4),
i.e. for cosimplicial maps and path classes.

11.9. Additivity properties. For additive (but possibly non-abelian) groups
A and B, a relation f: A— B is called additive if: (i) h(0)=0; (ii) h(a)=b
implies A( — a) = — b; and (iii) k(a,) = b, and h(a,) = b, imply h(a, + a,) =
b, + b,. For a group G right-acting on B, a relation k: G— B is called
crossed-additive if: (1) k(e)=0; (i) k(g)= b implies k(g~')= — bg~'; and
(i) k(g)=b, and k(g)=>b, imply k(g.g)=0bg&+b, A general
d,: Nt (X™, b)— Nm,.,_(X™*", b) always gives 4,(0) = 0 and is additive for
q > m with (m, q) # (0, 1) or g = m >r (or ¢ = m = r in the improved case
11.4). A general d,: Nm,(X°, b)— N=r, (X', b) is crossed-additive using the
fundamental action (3.2) of m,(X°, b) on Nr,(X", b). These results follow by
applying 10.5 and 11.6 after reducing to the pointed case.

11.10. Domain and indeterminacy properties. For a general
d,: Nm,(X™, b)— Nm,.,_,(X"*', b) with r =z 2, the domain of 4, equals the
kernel of d,_, and the indeterminacy of d, equals the image of d,_,. For a
general d,: Nz,,(X™, b)— Nm,, ., (X" 7", b) there are further indeterminacy
properties in cases where d, may be non-additive. If d,x = y with r = m, then
d x =y + z for each element z € N7, ,,_ (X", b) in the indeterminacy of
d,. If d.x =y and d,x =y’ with r = m, then the element y — y’ lies in the
indeterminacy of d,. Furthermore, in the improved case (i.e. when
[r(X™*7 b), B (X", b)] =0), if dx =ywithr=Zm+1,thendx=y +z
for each element z ENmw,,, . ,_,(X™*7, b) in the indeterminacy of 4,, , ,. Finally,
in the improved case, if d,.x = yand d.x = y’ withr = m + |, then the element
y’ — y lies in the indeterminacy of d,. These results follow by reducing to the
pointed case and using 11.6 when needed.

11.11. Composition properties. For ¢,r,s=1 and ¢>m =0, let bE
Tot,.,_; X* be a vertex with trivial Whitehead products between
m (X™*7*%, b) and the image of

b*: nr+s—1(Skr+s—lAm+r+ss O)_*nr+s—l(Xm+r+s’ b)

This condition on bE&Tot,,,_; X* holds automatically when b lifts to
Tot, ., X* or when X™*"** has trivial Whitehead products. The general differ-
entials

Nm,(X™, b)i’ Nrg i (X7, b)i’ Ny ppys— oA X™F745, D)
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are now defined and have range d, C ker d,. Moreover, if d.(w)=x and
d(y)=z,thend,(y + x) = zwhen (m, q) # (0, 1) and d,(yw + x) = zw when
(m, g) = (0, 1) with yw given by the fundamental action (3.2). These results
follow by reducing to the pointed case of (X/Sk, . ,_,A)" made fibrant, where X*
is the pullback of b: Sk, ;_,A*—P,_ X*< X*asin 11.3.

11.12. Equivariance properties. Suppose that the general differentials
d,: Nm,(X™,b)—Nn,,,_(X™*',b) and d,:Nm(X°, b)—Nn,(X",b) re-
spectively give d,(y) = z and d,(w)=0. Then the former gives d,(yw) = zw
using the fundamental action of 7,(X°, b). This follows by the naturality of d,
in b, since w must lift to n,(Tot, X*, b).

11.13. Hurewicz properties. For a general differential d,: Nz (X™, b)—
Nmg ., (X™*", b) and ring R with identity, there is a corresponding homology
differential d,: NH,(X™; R)— NH, ,,_(X™*"; R) of [6] which gives d,(hx) =
hy whenever d,x = y for x € Nn,(X™, b). This follows using 10.8.

Finally, we introduce

11.14. The bottom differential. For r =1, the bottom differential
d,: i, X°— Nnf™ X" is defined as the composite of the relations

1, X° = 7, Toty X* < 1, Tot,_, X° —— N X

with ¢ as in 10.6. The free kernel of d, is defined as the set of all x € 7, X° such
that d,x = p for some trivial p € Nz, X". By 10.7, this free kernel equals the
image of m, Tot, X*— n,X°, which equals the domain of @, . ,. For a ring R with
identity, there is a corresponding homology differential d,: Hy(X% R)—
NH, _(X"; R) which gives d,(ex) = hy by 10.8 whenever the bottom differen-
tial gives d,x = y for x En, X"

§12. Construction of homotopy differentials: Part 11

For a fibrant cosimplicial space X°, we now construct differentials
d,: Nn(X™,b)—Nnm,,,_(X™*", b) in the case g <m. As in [9], we use
universal examples in the homotopy category Ho(VS,) of pointed cosimplicial
spaces (see [8, p. 277]).

DEeFINITION 12.1. Forl<g<mand 1 =r = gq, a d"%model is a pointed
cosimplicial space M* with elements i € Nz, M™ and jENm, ., M™*" such
that:

(i) M is simply connected for s = 0.
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(ii) The integral homology spectral sequence [6] of M® has d": NHM™ =~
NH,,,_ M™*"=~Z, 6 NHM°’=~ Z, and NH, M* = 0 otherwise.
(iii) The elements A(/)ENH,M™ and h(j)ENH,,,_ M™*" are generators
with d,h(i) = h(j).

LEMMA 12.2. Let M® be a d"™-model for 1 <q<m and 1sr=q.
Then for t <2q — 1, the group Nm,M* is isomorphic to n,S? when s =m,
to mSi*""' when s=m+r, and to 0 otherwise. The group
Nny_ M*IN[r,M*, 1, M*} is isomorphic to my,_S*/[%,S?, n,S7) when s = m,
10 Mpq 1 S [0, 89, m, St when s = m + r, and to 0 otherwise.

ProOOF. By 12.1, h:n,M*— H,M"’ is onto for t =1 and s =0, and thus
each M’ is weakly equivalent to a wedge of g-spheres and (¢ + r — 1)-spheres.
Let Fr,M° C n,M* denote the subgroup of elements in the image of
Je:m(SOv .- vS)— M’ for some mapf:S?v ... vS?— M. There are
cosimplicial isomorphisms

FraM*=nS'QHM® fort<2q-—1,
aM/FaM =S 'QH,,, . M* fort<2q—1,
Frpg_ Ml[7,M®, 1, M) = (13 - S/[7,S%, 7,5]) @ H,M",

My SV T'QH, M forr>1,
g M1 Frpy_ M® =
0 forr=1,

and the lemma follows since normalization is exact and commutes with
additive functors.

12.3. The models D4, For 0 < g < mlet M be the pointed cosimplicial
space such that (M9’ equals: * for s < m; §?for s = m; and the wedge V, d'S*
for s > m, where d'S? = §7 with d’ ranging over the cofacial operators from
dimension m to s. Choose a weak equivalence M™?— D4 to a fibrant-
cofibrant pointed cosimplicial space D4, Let i € Nz, (D)™ be represented by
84 C (M9 and let j ENm (D)™ +! be j = (— 1)~ ™*1§(j) with § as in 2.2.
Then D{"?is a d[™*model when g > 1. Moreover, for each pointed cosimplicial
space Y", there is a bijection [D™4, Y*]=~ Nn,Y™ sending each f to f,(i).
Proceeding inductively, given the d™4-model D™ with 2 <r <gq, we then
construct D" by forming the homotopy cofibering
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- - J k
D;"'H Lg+r—-2 ,Drm_,q] __,D:n,'l

with D™ fibrant-cofibrant and with the map; representing j€E
Nz, ,_Dm4)™*"~1. Using Mayer-Vietoris sequences for the homology
theories NH,Y* and H,T,(Z ® Y*) with T, as in 10.8, we deduce 12.1(ii) for
D, We let i =k, (i)ENm, (D)™ and, using the triviality of j,(j)€
Nryyr—oADH4)™*" =0, we choose jENm,,,_(D/*)™*" such that D4 is a
d™4-model. If M* is a pointed cosimplicial space with Nz, ,,_ M™** =0 for
1 =u =r—1, then for each a ENn,M™ there clearly exists f: D/ — M"® in
Ho(VS,) with f,(i) = a. Thus for any d"%-model M*, there exists f: D]** — M*®
with f,(i) =i, and f: D" =~ M" by a homology argument. Moreover, by 12.2
fU)=jwhenr<gqand f,(j)—jE€[r,M"*, n,M™ ) when r =q.

12.4. Pointed differentials in negative dimensions. For a pointed cosimpli-
cial space Y*, 0<q <m, and 1 =r =g, we define a relation d,: Nz, Y" —
Nm, .., Y™*" by letting d'(e) = f whenever there is a map u: D/?—Y* in
Ho(VS,) with #,(i) = « and u,(j) = B. This is clearly natural in Y* and

LEMMA 12.5. Suppose that the pointed differential d. is defined on
Nr,(X™, b), and let f: Y*—Z* be a pointed cosimplicial map such that
Se:NoY*=NnZ for m=s=m+r, q=st=q+r—1,and t—sz—1.
Then the pointed differentials

d,:Nn,Y"—Nm,,,_, Y"*',  d":NmZ"—Nmn,, 2™
correspond under f,.
Proor. We may assume Y* and Z* fibrant and obtain equivalences
S P,_yMap,(Di*?, Y*) = P,_ Map, (D{", Z°)

for 1 < k = r by induction on k. The result follows when k =r.
For the fibrant cosimplicial space X®, we use the pointed differentials of 12.4
in the construction of 11.3 to give

12.6. General differentials in negative dimensions. These are relations
dr : qu(Xm’ b)'_‘qu+r—l(Xm+r’ b)

for 0<q<m and 1 =r =q where bETot, X* is a vertex such that the
Whitehead products between 7, (X™*’,b) and the image of
by: m,(Sk,A™*7,0)— 7, (X™*’, b) are trivial. This holds automatically when b
1s liftable to Tot, ., X*.

We also use 12.4 in 11.4 to give
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12.7. Improved general differentials in negative dimensions. These are
relations
dr : qu(Xma b)_qu+r_1(Xm+r, b)

for0<g<mand 1 =r = qwhere bETot,_, X*is a vertex liftable to Tot, X*
and such that [z, (X™*", b), m,(X™*", b)] = 0.

The following results on these general differentials are easily verifed by
reducing to the pointed case.

12.8. Formulaford,. Forgq <m,agenerald, : Nn (X", b)— Nm (X™*', b)
equals the function (— 1)9-"*1§ of 2.2.

12.9. Naturality properties. For ¢ <m, a general d,: Nm, (X", b)—
Nm, ., (X™*', b) is natural in X* and bETot, X* (or bETot,_ X* in the
improved case 12.7), i.e. for cosimplicial maps and path classes.

12.10. Additivity properties. For g <m, a general d,: Nm(X™, q)—
Nm, ., (X™*", b) always gives d,(0) = 0 and is additive for r <g (orr =¢qin
the improved case 12.7). This follows by constructing appropriate homotopy
classes D4 — D"4 v D",

12.11. Domain and indeterminacy properties. For a  general
d,: Nn (X", b)—Nm,,,_(X™*", b) with ¢ <m and r = 2, the domain of 4,
equals the kernel of d, _,, and the indeterminacy of d, equals the image of 4, _,.
This follows since there are homotopy cofiberings

Dyr#r=ta+r=2 L, Drg D4, DiH—t D — Drlat
by 12.3 because the homotopy cofibre of i is a d™ ¢+ !-model.

12.12. Obstruction properties. For a vertex b €Tot,,_, X® with m = 2, the
obstruction c(b)ENT,_(X™,b) lies in the kernel of each general
d:Nn,_ (X", b)—Nn, ., _(X"*",b)withr<m—1(orr=m—1 in the
improved case 12.7). This follows using the universal example Sk, _,A*
made fibrant with b = 1, together with the following vanishing results ob-
tained as in 12.2: (i) for m = 3 and ¢t <2m - 3, the group N=,Sk,, _,A* is
isomorphic to 7,S™ ! for s = m and to 0 otherwise; (ii) for m = 3 the group
Nmn,,, 1Sk, _ A IN[R,, _ 1Sk A%, T _ Sk — 1 A%] is isomorphic to
Tom—3S™ Y[ Mpy—1S™ 1, A, _1S™ '] when s = m and to 0 otherwise; (iii) for
m =2, the group N(Abn,Sk,X’) is isomorphic to Z for s =2 and to 0
otherwise.
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12.13. Composition properties. For r,s=1 and 1=g=m, let bE
Tot,,,_; X* be a vertex with trivial Whitehead products between
7, (X™*7*5, b) and the image of

b*: nr+s-l(Skr+s—1Am+’+s: O)_,n’+s_l(Xm+r+s, b)-

This holds automatically when b is liftable to Tot, ,, X°. Assume one of the
following:
) r+s=gq.
(i) r +s =g+ land [m(X"*"*, b), m(X"*"*, b)] =0.
(iii) s<g=m.
(iv) s =q =mand [r,(X"*"**, b), myy, (X", b)] = 0.
Then the general differentials

NfX™, B) % Ny, (X", b) % Nty oo X744, b)

are defined and have range d, = ker d,. After reducing to the pointed case, this
follows for ¢ < m by applying 12.2 to the model D4, and follows from g = m
by using 12.12.

12.14. Equivariance properties. For g < m, suppose that the general differ-
entials

d’:qu(Xm’ b)_‘qu+r-l(Xm+" b)a dr:an(XO’ b)"‘Nﬂ,(X’, b)

respectively give d,y =z and dw = 0. Then the former gives d,(yw) = zw
using the fundamental action of ,(X°, b). This follows by the naturality of d,
in b since w lifts to z,(Tot, X*, b).

12.15. Hurewicz  properties. For a  general d,:Nm, (X", b)—
Nrg i, (X™*", b) with ¢ < m and ring R with identity, there is a correspond-
ing homology differential d,: NH (X™;, R)— NH,,,_(X"*"; R) of [6] which
gives d,(hx) = hy whenever d,x = y for x € Nn,(X™, b). This follows by natur-
ality since it holds for our model D/*? by definition.

§13. Construction of the homotopy spectral sequences

The spectral sequences of 2.4-2.6 are now immediately obtained by assem-
bling the general differentials of Sections 11-12. We briefly outline the case of
2.4; the other cases are very similar but involve the improved general
differentials. We shall use
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13.1. Partial group actions. A partial right-action of a group G on a set Wis
arelation*: W X G— Wsuchthat: (i) w xe = wforeachwEW;(li)w*g =X
implies x *g~! = w; and (iii) w *g = x and x * h = y imply w »gh = y. There
is an associated equivalence relation ~ on W, where w ~ x means w *g = X
for some g €G, and W/ ~ is called the orbit set of W under the partial action.
For an additive (but possibly non-abelian) group B with right-action by G,
each crossed-additive relation k: G— B (as in 11.9) determines a partial right
action of G on B where b »g = bg + r whenever k(g) =r.

13.2. Construction of {E;*(X",b)} in 24. For r=1 and 4E€Tot,_ X*
liftable to Tot,,_, X°, we construct E:*(X*, b) as follows using the general
differentials and their properties from Sections 11-12. When r=1,
E3{(X®, b) = Nn,(X*, b). When r =2, EX(X", b) is the free kemel of the
bottom differential (11.14) d,_, : meX®— Nzf=, X" for t = 1, E* (X", b) is the
kernel of the general d,_,: N, (X°, b)—Nn,.,_ (X", b) for 1 St =r—1;
E*(X®, b) is the orbit set of the kernel of the general d,_, : Nz, (X', b)—
N7, ,_{X**"~1 b) under the partial right action associated via 13.1 with the
crossed-additive (11.9) general d,: Nm,(X°, b)— N=n,(X*, b); otherwise,
E:'(X°, b) is the quotient of the kernel of the general d,_, : Nn,(X°, b)—
Nm, ., o(X**"~1 b) by the image of the general di: Nm _;, ,(X* %, b)—
Nn,(X*, b) where k = min{s, r — 1}. The spectral sequence differentials are
induced by the general differentials and the bottom differential.

APPENDIX

§14. On the homotopy theory of groupoids and cosimplicial groupoids

For a fibrant cosimplicial space X*, the cosimplicial fundamental groupoid
nf*X* contains important information applicable to the lifting problem for
vertices in {Tot, X*}. In 5.1 we obtained a natural correspondence

n°n X* = (m, Toty X*)V = Im(m, Tot, X*— n, Tot, X°).
Here, we shall introduce a set z'z§?X* and obtain a natural correspondence
n'nfX* = (1, Tot, X*)V = Im(n, Tot, X*— n, Tot; X*).

Thus a vertex b€ X°=Tot, X* will be liftable to Tot, X* iff [] belongs to
77, X® and lies in the image of the tower map n'n§*X* — n°n,X°. When the
spaces X* have abelian fundamental groups, the image condition can be
replaced by the vanishing of the obstruction wy(b)E n’n,(X*, b) of 5.2, and
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such obstructions may possibly be defined in other settings using nonabelian
cohomology. However, in general it seems homotopically most natural to use
n'nfX*. We start by assembling the homotopy theory of groupoids introduced
in [1], [10], [14], and elsewhere. Then we prolong that theory to cosimplicial
groupoids. For a cosimplicial groupoid G*, we introduce the total groupoid
Tot G* and define n'G®= n, Tot G* generalizing n' from the cosimplicial
group case (2.2). This leads to the formula n'zfX* = (n, Tot, X*)V.

14.1. The homotopy theory of groupoids. Let #n§?:S—Gd denote the
fundamental groupoid functor from simplicial sets to groupoids. Thus for
K €S, nfK is the groupoid whose vertices (i.e. objects) are the vertices of
K and whose morphisms from x to y are the path classes from y to x. The
funtor 7§ has a right adjoint B:Gd — S where BG is the categorical nerve of
G. The adjunction counit gives an isomorphism n{*BG =~ G for each G €Gd,
and thus B is fully faithful. There is a mapping groupoid Map(G, H) whose
vertices are the functors G — H and whose morphisms are the natural trans-
formations; moreover,

Map(F X G, H) = Map(F, Map(G, H)) for F, G, HEGA.
Since n§?: S— Gd preserves finite products, adjunction gives
BMap(n#’K, Hy=Map(K,BH) forKES and HEGJ.

By [2], Gd is a closed model category [20], where a map ¢ : G — H in Gd is:
(i) a weak equivalence iff ¢ is a categorical equivalence; (ii) a cofibration iff ¢ is
monic on vertices; and (iii) a fibration iff for each vertex g € G and morphism u
to ¢(g) in H there exists a morphism # to g in G with ¢(##) = u. Moreover, Gd is
a closed simplicial model category [20] with

GR®K=G XK, GX=Map(nf’K,G),

and function space B Map(G, H) for G, HEGd and K€S. Examples of
fibrations in Gd include full functors ¢ : G — H surjective on vertices and
covering maps ¢ : G — H, i.e. fibrations such that the above lifting # exist
uniquely. A map¢:G—H in Gd is a weak equivalence or fibration iff
B¢ : BG —+ BH is such. Whenever a map f: K— L in § is a weak equivalence,
cofibration, or fibration, then #§‘f: nf?’K — nf’L is such. Finally, note that
each G €Gd is cofibrant and fibrant.

For a groupoid G, let ;G = Vert G/ = . For a vertex x €EG, let ny(G, x) =
(G, x), let n(G,x)=Aut x, and let m;(G,x)=0 for i=2. Weak
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equivalences and fibrations in Gd produce the usual isomorphisms and exact
sequences of 7,-terms. For x € G € Gd and y € Y €S, there are natural isomor-
phisms 7,(BG, x) = n(G, x) when i = 0 and n(Y, y) = n,(n§’Y, y) when j =
0, 1.

14.2. The homotopy theory of cosimplicial groupoids. The above nf“ and B
prolong to adjoint functors znf?: VS« VGd: B between the categories of
cosimplicial spaces and cosimplicial groupoids. There is a mapping groupoid
Map(G®, H®) and are natural isomorphisms

Map(F X G*, H*) = Map(F, Map(G*, H®)) = Map(G*, Map(F, H*))

of groupoids for FEGd and G°, H*€VGd. There is also an adjunction
isomorphism B Map(n§‘X®, H*) = Map(X®, BH*) for X*€ VS and H*€VGd.

The category VGd has a closed simplicial model category structure, similar
to that of VS [8, p. 277], where a map ¢: G*— H* in VGd is: (i) a weak
equivalence iff ¢: G™ — H™ is a weak equivalence in Gd for m =z 0; (ii) a
cofibration iff ¢ restricts to a cofibration of the vertex cosimplicial sets; a
fibration iff the maps

(@,5): G™— H™ X pym-1yyp M™~1G*

are fibrations in Gd for m =0 where (¢, s) is as in [§, p. 275]. A map
¢:G*— H* in VGd is a weak equivalence or fibration iff B¢ : BG*— BH® is
such. Whenever a map f: X*— Y* in VS is a weak equivalence or cofibration,
then nff: nf’X° — nf’Y™ is such; likewise, whenever f: X*— Y” is a fibration of
termwise connected fibrant objects, then n§¢fis such by [6, 5.2-5.3] since Br§?
is a generalized Postnikov functor. If ¢: G*— H® is a map of termwise
connected cosimplicial groupoids such that each ¢ : G™ — H™ is full and each
(9,5): G™— H™ X, m-1z; M™'G is surjective on vertices, then each (g, §) is
full and ¢:G*— H® is a fibration as in [6, §5]. In particular, a quotient
homomorphism of cosimplicial groups is a fibration in VGd. However, VGd
has non-fibrants such as nf?A°.

14.3. Total groupoids. A cosimplicial groupoid G* has a total groupoid
Tot G*=Map(n§?A%,G*) and tower of groupoids Tot, G*=
Map(n§Sk,A*, G*), satisfying B Tot G* = Tot BG*® and B Tot,, G* = Tot,, BG*
by adjunction. In more detail, Tot, G* = G° Tot, G* has vertices (x, u) where
x€EobjG® and u:d«—d'x in G' with s%% =1, and has morphisms
a:(x,u)—=(y,v) for a:x—y in G° with (d'a)u = v(d%); the tower map
Tot, G*— Tot, G* is a covering sending each (x, u) to x; Tot, G* is the full
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subgroupoid of Tot, G* given by all (x, u) with (d’*u)(d’u)(d'u)~' = 1; and
Tot G* = Tot,, G* = Tot, G* for m = 2. Foramap ¢: G*— H* in VGd: (i) if ¢
is a weak equivalence (or more generally if ¢ : G" — H" is an equivalence for
n =0, 1 and faithful for n = 2), then each Tot,, ¢: Tot,, G*—Tot,, H* is an
equivalence; and (ii) if ¢ is a fibration (or more generally if ¢: G°—~H" is a
fibration), then each Tot,, ¢ : Tot,, G*— Tot,, H* is a fibration.

For a cosimplicial groupoid G*, we define #'G* = 7, Tot G* and n%G*, b) =
n,(Tot G*, b) for any vertex b € Tot G°. There are evident 7* isomorphisms for
weak equivalences and 7n* exact sequences for fibrations of cosimplicial
groupoids. When G° is termwise connected with a vertex b E€Tot G, the
definitions of 2.2 apply to the cosimplicial group n,(G*, b), and there is a
bijection n'm(G* b)~=~='G* and isomorphisms 7°%(G*, b)=n%G", b)
obtained using the weak equivalences

7(G* by~ G*—2- G
where f is given by b : #f°A*— G* on vertices. Finally

PrOPOSITION 14.4. For a fibrant cosimplicial space X*, there is a natural
bijection (m, Tot, X*) P = n'nf’X*

Proor. It suffices to show that X®— BnfX® induces

(mo Tot, X»)¥ = (z, Tot, Ba*X*)V.
since clearly
(7, Tot, BafeX") = (m, Tot, afX")V = n'nf’X".

Assuming by reduction to components that X* is connected, this follows by
3.1 and 5.1 since X*—Bnf’X* is a map of fibrant objects inducing
af(X") = nf{(Brf’X").
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